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Variational quantum hypothesis testing

ABSTRACT

Distinguishing between two quantum maps is a fundamental task in quantum mechanics which can
be thought of as a hypothesis testing task. In this report, a novel variational quantum algorithm
is presented which constructs the optimal probe and the optimal measurement to distinguish two
quantum map. The obtained state aims at saturating the Holevo-Helstrom bound and is bipartite in
nature. The maps are only acted on one part of the state and since it is bipartite it aims at being the
state which is used to find the diamond distance between two quantum maps. To this end our novel
algorithm also is capable of diamond distance estimation. We also apply this algorithm to the task of
quantum illumination demonstrating a variational quantum algorithm using purely Gaussian states.

1 Introduction

Hypothesis testing is of great relevance in classical statistics with the main task revolving around finding out whether
a certain observed quantity belongs to one statistic or the other. The key principle revolves around introducing two
hypotheses and defining the condition that either accepts or rejects one of the hypotheses [58]. This method naturally
results in possible errors due to incorrect classification. Naturally one would wish to minimize these errors as much
as possible. The general notion is that there is a null hypothesis H0 and some alternate hypothesis H1 and a false
negative is if we claim H0 when it was truly H1 and a false positive is if we claim H1 when it was truly H0. The error
probabilities of a false negative and false positive are denoted as β and α respectively. Depending on the aims of our
testing scenario, we may either wish to minimize both these errors which is the symmetric error testing case, or we
may wish to minimize one of them as long as the other is bounded which is the asymmetric error testing case.
Similarly one may wish to be able to distinguish between two quantum states. Here the hypotheses can be whether one
received some state ρ0 or some state ρ1. The task now would be to carry out measurements on these states to tell them
apart with as much accuracy as possible. These measurements will be two outcome measurements which correspond
to the two hypotheses. This task has been studied in various limits for the single-shot case [27, 30] and the asymptotics
with many copies [3, 50, 28, 42, 63]. These bring about natural interpretations for various distance measures which
can be defined between two states such as the trace distance or relative entropy which itself speak about error bounds
in the symmetric error testing and asymmetric error testing cases. We explore these relations in section 3. These bring
us to certain bounds which limit us in how well we can tell apart two states. An important interpretation we obtain
here is that certain measures such as the trace distance, are infact nothing but a solution of an optimization problem,
the optimization being over finding the best possible POVM measurement scheme [17].
Now suppose we were to generalize this problem to distinguishing between two quantum maps E0 and E1 instead of
two quantum states. In this scenario we would have to send some initial state ρ to the quantum map and then perform
measurements to distinguish between the state ρ0 = E0(ρ) and ρ1 = E1(ρ). In this case, in addition to finding the
optimal distinguishing measurement, we need to also find the optimal probe. A natural bound provided here is that of
the diamond distance [2] between the two quantum maps. Interestingly, the diamond distance itself is calculated as
the maximum possible trace norm between the states obtained by acting the map on a bipartite state where the map
only acts on one part of it. This means that the optimal way of distinguishing two quantum maps naturally requires
and entangled probe where the map is acted on one part of the probe and the other part is left unaffected.
This exact idea of acting the probe on only one part of the state can be found in quantum illumination [44, 60, 61, 56,
20, 40, 35]. In quantum illumination, a two mode probe is created which generates photons that are entangled. The
task is to distinguish between the presence and absence of a very weakly reflective beamsplitter in a bright thermal
bath. This means that the detector either receives purely thermal light or it receives thermal light mixed with a small
part of the signal that reflected. It has been shown that making use of an entangled probe will outperform using just
a signal without an idler. This is because a joint measurement scheme is able to extract more information despite
the entanglement breaking down since even if the photon has reflected it has lost a lot of its entanglement. There are
similar hypothesis testing tasks in a similar context such as quantum reading which tries to identify classically stored
data using quantum light [55] and quantum ranging which performs a ranging radar task as a multiary hypothesis test
using quantum light [68].
In this report we try to build on these ideas to provide a novel shallow-depth variational quantum algorithm which can
be used for both finding the optimal probe and optimal measurement scheme for distinguishing quantum maps. The
description of the algorithm can be found in section 4 and it has been applied to the task of quantum illumination with
the results shown in section 5. Our algorithm is designed for NISQ (noisy intermediate scale quantum) devices [7]
given that it doesn’t have a large depth and also shows robustness to errors.
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Variational quantum hypothesis testing

2 Variational quantum algorithms

The variational method in quantum mechanics [59] tries to find the ground state energy of a Hamiltonian Ĥ : H → H
by treating the task as an optimization problem.

E0 = inf
|ψ⟩∈H

⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(1)

Now suppose we were to parameterize this state as |ψ(θθθ)⟩ by preparing it using some unitary, we could classically
optimize θθθ to get θθθ0 = argmaxθθθ(⟨ψ|Ĥ|ψ⟩) (assuming the state is normalized). This is the underlying principle for the
operation of the variational quantum algorithm [15]. These are specifically designed for NISQ devices [7]. The NISQ
era described quantum computers with hundreds of noisy qubits which are not error corrected. In this regime, VQAs
have been able to offer interesting results. A VQA workflow as described in [7] can be boiled down to the following
components

1. The objective function O that encodes the problem to be solved.
2. A parametrized quantum circuit which has some set of parameters θθθ which are to be tuned in a way to

minimize O.
3. A measurement scheme that is used to evaluateO by measuring expectation values ⟨H⟩ and do basis changes.
4. A classical optimizer which minimizes O by variationally updating θθθ.

The parametrized quantum circuit is defined using a circuit ansatz which can be defined in accordance to the system
for which the VQA is being applied. The hardware-efficient ansatz [34] aims at providing a low depth ansatz which is
constructed with the constraints of the kind of connectivity between the qubits in the given processor.
The training of a VQA is an NP-Hard task [8], which means that in general the classical optimization task is pretty
hard. In addition to this there is the issue of barren plateaus that form when using large depth circuits [46]. The issues
of barren plateaus can be avoided using low depth circuits of depth O(log n) or using local observables [14]. For any
variational quantum algorithm, expressibility of the ansatz is of great importance. In [62] the relation between external
driving and disorder to the expressibility of parametrized analog circuits is studied with ways of still maintinging
quantum supremacy presented.
Finally there are applications in quantum sensing for variational quantum algorithms as well [47]. This has been
explored with variational quantum Ramsey-interferometry [36, 45]. These provide an interesting structure of VQAs
where both the state preparation and measurement parts of the circuit are made variational. This gives a physical
interpretation in the case of quantum sensing as preparation of both the optimal probe and optimal measurement
scheme. The algorithm we use for hypothesis testing is loosely based on this structure since it also prepares an optimal
probe along with optimal measurements.
Some other interesting uses of variational quantum algorithms are the estimation of quantum Fisher information [4]
and estimation of trace distance and fidelity [17]. In the case of [17], the optimization mainly picks out a measurement
scheme for distinguishing the two states between which the trace distance needs to be found. This is also a principle
we make use of in our algorithm for hypothesis testing.

3 Quantum hypothesis testing

This section will provide a brief review of the theoretical limits of quantum hypothesis testing.

3.1 Statistical hypothesis testing

Statistical hypothesis testing in essence is the task of distinguishing between two probability distributions. There are
two major philosophical interpretations for this task, one developed by Fisher [31] and the other by Neyman-Pearson
[58]. While differing in how they look at their outcomes, they are in principle equivalent in practice [41]. To briefly
describe the two approaches, they can be simplified as follows:

• Fisher’s approach: the method was called a significance test with respect to a null hypothesis H0 with no
alternate hypotheses. An exact level of significance is defined as how well the observed statistic matches the
null hypothesis. On the basis of this level of significance the hypothesis conclusions are drawn only if the
result is significant enough.

• Neyman-Pearson’s approach: the method was called decision theory and sets up two statistical hypothesis
H0 and H1. Here a similar level of significance is calculated but this time a threshold is defined as well. This
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threshold is used to decide if a hypothesis is to be accepted or rejected. Since a decision between the two
hypotheses is always made no matter what, there will be certain error probabilities due to false negatives and
false positives.

Our approach will follow the hypothesis testing defined by Neyman-Pearson. This lets us define type-I error probability
α and type-II error probability β. Here we can see how the decision which rejects H0 can be adjusted based on which

H0 is true H1 is true
H0 accepted Type II error (β)
H0 rejected Type I error (α)

Table 1: Description of decision outcomes

kind of error we wish to minimize. To understand what a decision could be like, let us imagine two probability
distributions f0(x) = N (µ = 0, σ = 0.5) and f1(x) = N (µ = 1, σ = 0.5). Here we recieve the value of x and our
hypotheses H0 and H1 are whether x was sampled from f0(x) or f1(x). We could define the decision to be that H0 is
accepted if x < 0.5 and this gives us some value for α and β.
This brings about a fundamental measure for distance between two probability distributions which is the Kullback-
Leibler divergence [39].
Definition 3.1 (Kullback-Leibler divergence). The Kullback-Leibler divergence or relative entropy for two discrete
probability distributions which are defined over the same probability space S is given as follows.

DKL(P∥Q) =
∑
x∈S

P (x) log

(
P (x)

Q(x)

)
(2)

More generally we need P and Q to be probability measures on a measurable space S and P must be absolutely
continuous with respect to Q. This lets us define the following for Kullback-Leibler divergence.

DKL(P∥Q) =

∫
S
log

(
P (dx)

Q(dx)

)
P (dx) (3)

Here P (dx)/Q(dx) = r(x) which is well defined on S and is known as the Radon-Nikodym derivative of P with
respect to Q. This quantity is well defined due to the P being absolutely continuous with respect to Q.

The importance of the Kullback-Leibler divergence is in how it tells us the distance between two probability distribu-
tions which in a sense also tells us how well they can be discriminated using hypothesis testing.

3.2 Distance measures for quantum states

In this subsection we will define the different distance measures used for quantum states and the relations between
them.
Definition 3.2 (Trace distance). The trace distance between density matrices ρ0 : H → H and ρ1 : H → H acting on
Hilbert space H is defined as follows.

T (ρ0, ρ1) =
1

2
∥ρ0 − ρ1∥1 =

1

2

∑
i

|λi| (4)

Here ∥∥1 is the trace norm. λi are the eigenvalues of ρ0 − ρ1. This can also be written in a variational form.

T (ρ0, ρ1) = sup
P≤I

(Tr(P (ρ0 − ρ1))) (5)

Here P is a positive operator with P ≤ I hence can be thought of a POVM element as well.

The expression in equation 5 will be of prime importance in our variational algorithm for quantum hypothesis testing.
The proof of equation 5 can be found in [48].
Definition 3.3 (Fidelity). The fidelity between two density matrices ρ0 : H → H and ρ1 : H → H acting on Hilbert
space H is defined as follows.

F (ρ0, ρ1) =

(
Tr
√√

ρ0ρ1
√
ρ0

)2

(6)
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Fidelity is qualitatively equivalent to the trace distance as is evident from the following inequalities [48].

1−
√
F (ρ0, ρ1) ≤ T (ρ0, ρ1) ≤

√
1− F (ρ0, ρ1) (7)

Definition 3.4 (Relative entropy and variance). The quantum relative entropy of density matrix ρ0 : H → H with
respect to density matrix ρ1 : H → H acting on Hilbert space H is defined as follows.

D(ρ0∥ρ1) = Tr(ρ0(log(ρ0)− log(ρ1))) (8)
The quantum relative variance of ρ0 : H → H with respect to density matrix ρ1 : H → H acting on Hilbert space H
is defined as follows.

V (ρ0∥ρ1) = Tr[ρ0(ln(ρ0)− ln(ρ1))
2]−D(ρ0||ρ1) (9)

Another important inequality is the quantum Pinsker’s inequality given as follows [29].

D(ρ0, ρ1) ≥
2

ln 2
T (ρ0, ρ1)

2 (10)

The quantities of relative entropy and variance have importance in the assymetric error setting for hypothesis testing.

3.3 Hypothesis testing in the quantum world

Let us have two quantum states ρ0 and ρ1 Quantum hypothesis testing is the task of identifying whether the given state
to us ρ0 or ρ1 and make a decision based on this. The hypothesis H0 corresponds to having received ρ0 and H1 for ρ1.
One can immediately see the link to statistical hypothesis testing since the density matrix formalism is closely related
to probability distributions. Our decision here would simply be based on the result of applying a measurement on the
state that is given to us and using these results to make a decision.
This would require using a binary result POVM {Π0,Π1} where Π0 + Φ1 = 1. This gives us the following table of
probabilities.

H0 is true H1 is true
H0 accepted Tr(Π0ρ0) β = Tr(Π0ρ1)
H0 rejected α = Tr(Π1ρ0) Tr(Π1ρ1)

Table 2: Probability of decision outcomes using a POVM {Π0,Π1}

Given that we wish to discriminate between two states, the error probability will respect certain bounds based on the
distance between ρ0 and ρ1. If we wish to optimize both α and β simultaneously by picking an appropriate POVM,
we run into the Holevo-Helstrom bound [27, 30].
Theorem 3.1 (Holevo-Helstrom bound). Given the task of discriminating two states ρ0 and ρ1 from a Hilbert space
H using a two-outcome POVM {Π, I−Π} we have the following bound for the error probability.

Perr ≥
1

2
(1− ∥ρ0 − ρ1∥1) (11)

The optimal POVM which gives rise to this error probability is defined as following Jordan decomposition.

Πoptimal = (ρ0 − ρ1)+ =
∑
λi>0

|i⟩ ⟨i| (12)

Here λi are the eigenvalues of ρ0 − ρ1 and |i⟩ are the corresponding eigenvectors.

Now in the same way if we were to have n copies input, we are essentially discriminating between ρ⊗n0 and ρ⊗n1 .
While equation 11 holds true, one needs to find how the value ∥ρ⊗n0 − ρ⊗n1 ∥ behaves. This is where we make use of
the Chernoff bound [3, 50]
Theorem 3.2 (Quantum Chernoff bound). Given the task of discriminating the two states ρ⊗n0 and ρ⊗n1 from the
Hilbert space H⊗n using a two-outcome POVM {Πn, I−Πn} we have the following bound for the error probability.

lim inf
n→∞

1

n
log(Perr,n) ≥ inf

0≤s≤1
logTr(ρ1−s0 ρs1) (13)

For notation we define the following quantity κ(ρ0, ρ1) as the Chernoff bound.

κ(ρ0, ρ1) = inf
0≤s≤1

logTr(ρ1−s0 ρs1) (14)

A weaker but related bound is the quantum Bhattacharya bound which substitutes s = 1/2.

κB(ρ0, ρ1) = logTr(ρ1/20 ρ
1/2
1 ) (15)
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The proof of the above found can be found in [50]. While both the Chernoff bound and Holevo-Helstrom bound look
at symmetric hypothesis testing (Bayesian approach) where we wish to minimize both α and β simultaneously, one
can also choose to optimize one while making sure the other is bounded the asymmetric error setting. Here we define
αn(Πn) = Tr(ρ⊗n0 (I − Πn)) and βn(Πn) = Tr(ρ⊗n1 Πn) for a sequence of POVM measurements {Πn, I − Πn}.
The quantum Stein’s lemma shows that the relative entropy is a critical jump point in the asymptotic behavior of
asymmetric hypothesis testing.

• For an arbitrary R ≤ D(ρ0∥ρ1), there exists a sequence of POVMs {Πn, I − Πn} such that the following
holds [28].

lim inf
n→∞

−1

n
log(βn(Πn)) ≥ R and lim

n→∞
αn(Πn) = 0 (16)

• Conversely [51] if a sequence of POVMs {Πn, I−Πn} such that

lim inf
n→∞

−1

n
log(βn(Πn)) > D(ρ0∥ρ1) (17)

then limn→∞ αn(Πn) = 1

To understand what happens when the asymptotic leading term in n is exactly D(ρ0∥ρ1) for βn we note theorem 2 in
[42].
Theorem 3.3. With null hypothesis of ρ⊗n0 and alternate hypothesis of ρ⊗n1 we denote error probabilities of αn(Πn)
and βn(Πn) for sequence of measurements {Πn, I−Πn}, we have the following:

• Achievability: for any E2 ∈ R and f(n) ∈ o(
√
n), there exists a sequence of measurements {Πn, I − Πn}

such that

βn(Πn) ≤ exp{−(nD(ρ0∥ρ1) + E2

√
n+ f(n))} (18)

lim sup
n→∞

αn(Πn) ≤ Φ

(
E2√

V (ρ0∥ρ1)

)
(19)

• Optimality: if there is a sequence of measurements {Πn, I−Πn} such that

βn(Πn) ≤ exp{−(nD(ρ0||ρ1) + E2

√
n+ f(n))} (20)

then the following holds for any given E2 ∈ R and f(n) ∈ o(
√
n)

lim sup
n→∞

αn(Πn) ≤ Φ

(
E2√

V (ρ0∥ρ1)

)
(21)

Here Φ : R → R is the Gauss error function.

The proof of this theorem is the main result of [42]. The importance of the above theorem is mainly to do with the
scaling this gives us for the type I and II error at the exact transition point which is given by the quantum Stein’s
lemma. Looking at equations 20 and 21 we see that there is some sequence of measurements which allows us to make
βn → 0 while keeping αn bounded by some non-zero quantity. What is important here is the rate at which βn goes to
zero is mainly dictated by D(ρ0∥ρ1).
An additional result on symmetric error testing with n copies can be found in [49] which uses the fidelity between the
states.

1−
√
1−F(ρ0, ρ1)2n

2
≤ Perr(ρ0, ρ1) ≤

F(ρ0, ρ1)
n

2
(22)

An important point so far is that we are considering the hypotheses H0 and H1 to be receiving a particular state ρ0 or
ρ1. This can be re-framed to instead defining the hypotheses H0 and H1 as whether a CPTP map E0 or E1 has been
applied on some ρ. This simply means we write ρ0 = E0(ρ) and ρ1 = E1(ρ) and do a state discrimination between
these two states.

4 A variational quantum algorithm to distinguish quantum maps

In this section we will describe a novel algorithm which is capable of producing an optimal probe and an optimal
measurement as well for the task of discriminating between two quantum maps in the single shot regime.
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4.1 What is the cost function?

Since we have a variational quantum algorithm, we must first understand what an appropriate cost function would be
which should also be efficient to evaluate. Here we will frame the problem at hand we wish to solve.
Inputs: CPTP maps E0 and E1 taking density matrices on Hilbert space H to density matrices acting on Hilbert space
H
Outputs: Density matrix ρ : H → H such that ρ = argminρ Perr(E0(ρ), E1(ρ)) where Perr(E0(ρ), E1(ρ)) is the
error probability in distinguishing between E0(ρ) and E1(ρ) using a two outcome POVM.
Using the results from the symmetric error testing case with only one copy of the states (equation 11), we can see that
the following holds

argmin
ρ

Perr(E0(ρ), E1(ρ)) = argmax
ρ

T (E0(ρ), E1(ρ)) (23)

Now if one were to somehow conduct the test with a large number of copies, that would make the LHS of the
above equation simply become argmaxρ κ(E0(ρ), E1(ρ)). The asymmetric error setting will make the LHS to be
argmaxρD(E0(ρ), E1(ρ)).
An important thing here is that all of these quantities are not easy to calculate simply by measurements. All of these
require having the density matrix of the state being available to us, a task which requires quantum tomography which
itself scales exponentially [18]. Estimation of trace distance is probably hard even for quantum computers given that
judging whether a trace distance is small or large itself belongs to the complexity class QSZK-complete [65, 1]. There
exist various methods to estimate the quantum relative entropy. Some of these are Taylor approximations [16] or
solving a semi-definite programming problem to attain the entropy value efficiently [21]. However these do not scale
well with system size due to exponential scaling of the Hilbert space dimension.
However there are ways of estimating trace distance using a variational quantum algorithm as shown in [17] and [1].
The main clue lies in the definition of trace distance as can be seen in equation 5. We need to variationally optimize
the POVM P to obtain the trace distance. To do this using a unitary operation, we must embed the POVM into the
unitary operator. For this the Naimark extension can be used [66].
Theorem 4.1 (Naimark extension). For any POVM {Γi}i∈O acting on a system S, there exists a unitary UPS (acting
on a probe system P and the system S) and an orthonormal basis {|i⟩P }i∈O such that

Tr
(
(|i⟩⟨i| ⊗ IS)UPS(|i⟩⟨i| ⊗ ρS)U

†
PS

)
= Tr(ΓiρS) (24)

As pointed out in [66], the two-outcome POVM {Γ, I − Γ} can be encoded in the following unitary with the probe
system being a qubit.

UPS = IP ⊗ (
√
Γ)S + i(σY )P ⊗ (

√
I− Γ)S (25)

Let us define a parameterized unitary V (ϕ) which acts over both the probe and the system. We define the following
quantity as an estimate of trace distance,

Tϕϕϕ(ρ0, ρ1) = |p0 − p1| (26)

pi = Tr
(
(|0⟩⟨0| ⊗ I)V (ϕϕϕ)(|0⟩⟨0| ⊗ ρi)V (ϕϕϕ)†

)
i ∈ {0, 1} (27)

On combining theorem 4.1 and equation 5, we get that ∀ϕϕϕ(Tϕϕϕ(ρ0, ρ1) ≤ T (ρ0, ρ1)). This is the main crux of using
a variational algorithm for estimating trace distance in [17]. As an extension to this, we define the following cost
function for our algorithm where we use an additional qubit as the probe subsystem.

T est
ϕϕϕ (θθθ) = |p0(θθθ,ϕϕϕ)− p1(θθθ,ϕϕϕ)| (28)

pi(θθθ,ϕϕϕ) = Tr
(
(|0⟩⟨0| ⊗ I)V (ϕϕϕ)(|0⟩⟨0| ⊗ Ei(ρ(θθθ)))V (ϕϕϕ)†

)
i ∈ {0, 1} (29)

Our optimization procedure will have to optimize both θθθ and ϕϕϕ for obtaining the best possible state preparation and
measurement. Let us define θθθ0 and ϕϕϕ0 as follows

θθθ0 = argmax
θθθ

(∥E1(ρθθθ)− E0(ρθθθ)∥1) (30)

ϕϕϕ0 = argmax
ϕϕϕ

(TDϕϕϕ(θθθ0)) (31)

Here θθθ0 optimizes toward the state that saturates the Holevo-Helstrom bound [30, 27]. As per the definition of the
optimization problem of trace distance estimation [17], ϕϕϕ0 represents the best parameters to estimate the trace distance
for ρθθθ0 . Now let us define the parameters obtained by a complete optimization as follows

θ̃θθ, ϕ̃ϕϕ = argmax
θθθ,ϕϕϕ

(Trϕϕϕ(E1(ρθθθ))− Trϕϕϕ(E0(ρθθθ))) (32)
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Clearly T est
ϕϕϕ (θθθ) ≤ ∥E1(ρθθθ)− E0(ρθθθ)∥1/2. Our task now would be to verify if θ̃θθ, ϕ̃ϕϕ ≡ θθθ0,ϕϕϕ0, to see whether the global

optimization reaches a meaningful result.
Claim 4.1.1. Under the following assumption

∀θθθ∃ϕϕϕ
(
T est
ϕϕϕ (θθθ) = T (E1(ρθθθ), E0(ρθθθ))

)
We can claim the following equivalence

θ̃θθ, ϕ̃ϕϕ ≡ θθθ0,ϕϕϕ0

Proof. From the assumption we have taken, it is quite clear that TDϕϕϕ0
(θθθ0) = ∥E1(ρθθθ0)−E0(ρθθθ0)∥1. Along with this,

since the parameters θ̃, ϕ̃ are from an optimization of T est
ϕϕϕ (θθθ), we must have the following inequality hold

TDϕ̃ϕϕ(θ̃θθ) ≥ TDϕϕϕ0
(θθθ0)

Now from the assumption that we have taken we can make the following claim

TDϕ̃ϕϕ(θ̃θθ) = ∥E1(ρθ̃θθ)− E0(ρθ̃θθ)∥1

If this doesn’t hold, there will exist some ϕϕϕ which gives the exact trace distance and the TD function always is less
than the trace bound hence resulting in a contradiction. Hence we have the following hold

∥E1(ρθ̃θθ)− E0(ρθ̃θθ)∥1 ≥ ∥E1(ρθθθ0)− E0(ρθθθ0)∥1
Let us assume that ∥E1(ρθ̃θθ)−E0(ρθ̃θθ)∥1 > ∥E1(ρθθθ0)−E0(ρθθθ0)∥1. This would contradict the fact that θθθ0 is a parameter
that saturates the trace distance. Hence we finally get the following hold.

∥E1(ρθ̃θθ)− E0(ρθ̃θθ)∥1 = ∥E1(ρθθθ0)− E0(ρθθθ0)∥1
Hence both these parameters saturate the Holevo bound and also they have the perfect trace distance estimators, hence
proving their equivalence.

While the assumption in the above claim requires V (ϕϕϕ) to be able to reach the optimal POVM’s Naimark extension
for all ρθθθ, this does show that the optimization procedure is sound and produces meaningful results.
In essence we will have to optimize our estimated trace distance since the real trace distance is not as easy to calculate
but this optimization will end up optimizing the true trace distance as well as the estimate of trace distance toward the
true value. This will be reflected in our results which we showcase in the sections that follow.

4.2 Description of the algorithm

Algorithm 1: Variational quantum hypothesis testing
Take input as E0 and E1 which are CPTP maps from density matrices in H to density matrices in H.
Initialize θθθ and ϕϕϕ which are parameters for U(θθθ) and V (ϕϕϕ).
Define convergence condition for cost function T est

ϕϕϕ (θθθ).
while T est

ϕϕϕ (θθθ) has not converged do
for θθθi = θθθ +∆θθθi and ϕϕϕi = ϕϕϕ+∆ϕϕϕi for some set of ∆θθθi and ∆ϕϕϕi do

Run circuit with parameters θθθi and ϕϕϕi with CPTP map as E0
Using measurements on q0 obtain value of p0.
Run circuit with parameters θθθi and ϕϕϕi with CPTP map as E1
Using measurements on q0 obtain value of p1.
Assign TDϕϕϕi

(θθθi) = |p0 − p1|
end
Using TDϕϕϕi

(θθθi) update θθθ and ϕϕϕ with a classical optimizer.
Check convergence of T est

ϕϕϕ (θθθ).
end
return final values of θθθ and ϕϕϕ.

The structure of the algorithm takes inspiration in structure from quantum variational optimization for Ramsey-
interferometry [36] which has been implemented experimentally as well [45]. The circuit consists of N atomic spins
and is exclusively operated in the Dicke basis [24]. Ramsey interferometry is the task of estimating a small phase shift
applied on an atomic spin. The optimal state for estimating the value of the phase shift applied on N atomic spins is

8
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Figure 1: Quantum circuit for diamond norm estimation. The state preparation is over the two n qubit registers q1
and q2. q0 is used for measurements that are used to estimate the trace distance between the two states. The map is
only applied over register q1 and the optimization hence aims to prepare the state which gives the value of diamond
distance as the trace distance between the states.

the GHZ state [9] which also reaches the Heisenberg limit [53, 25]. However, as pointed out in [empty citation], the
optimal state if we assume ϕ to have a prior width δϕ is actually not the GHZ but is an entangled state.
In such a situation the capability of a variationally optimized state can be used to construct the appropriate the correct
state. However obtaining information from the state requires a measurement and here that is included by what is called
as the decoding layer. This is essentially just a parametrized unitary before measurements of each spin is done hence
can give rise to joint measurements.
Our circuit does a very similar thing with trying to optimize a state preparation and a Neimark extension of a POVM
simultaneously. From the task we accomplish, we obtain both a state preparation and POVM which are optimized for
distinguishing the maps E0 and E1. Since our aim is to approach the states that saturate the Holevo-Helstrom bound,
this minimizes error probability in the single-shot regime.

4.3 An algorithm for diamond distance estimation

Diamond distance is a metric used to characterize how much different two quantum maps are from each other. Natu-
rally this is deeply linked with the task of distinguishing two quantum maps.

Definition 4.1 (Diamond norm & distance). Given Φ : Mn(C) → Mm(C) which is a linear map and X ∈ Mn2(C)
where Mn(C) is the set of n× n complex valued matrices.

∥Φ∥⋄ := max
X;∥X∥1≤1

∥(Φ⊗ In)X∥1, (33)

Here ∥A∥1 = Tr
√
A†A. Using the above equation we define the diamond distance for two CPTP maps Φ1 and Φ2 as

follows for density matrices ρ

d⋄(Φ1,Φ2) = ∥Φ1 − Φ2∥⋄ := max
ρ

∥(Φ1 ⊗ In)ρ− (Φ2 ⊗ In)ρ∥1, (34)

Clearly equation 34 highlights the exact optimization problem we need to solve to estimate the diamond distance
between two states. The diamond distance also has a lot of important physical interpretations as a distance measure.

Lemma 4.2 (Properties of diamond norm). The following properties hold for a quantum gate T : L(N ) → L(M).

1. ∥T∥⋄ = ∥T ⊗ IG∥1 ≥ ∥T∥1 where dimG ≥ dimN

2. ∥T ◦ ρ∥⋄ ≤ ∥T∥⋄∥ρ∥1

3. ∥T ◦R∥⋄ ≤ ∥T∥⋄∥R∥⋄

4. ∥T ⊗R∥⋄ = ∥T∥⋄∥R∥⋄

5. ∥T∥⋄ = 1 if it is physically allowed.

9
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All of the above properties are proven in [2]. The important result we will be using is property 1 of lemma 4.2 which
directly relates the diamond norm to the 1-norm. The definition of the 1-norm for an operator T is as follows.

∥T∥1 = sup
X ̸=0

∥T (X)∥1
∥X∥1

(35)

What is important with the diamond distance is that it comments on how the different states we obtain from the two
maps are even when we allow entangled states to enter them. This is important since we can obtain more information
from a quantum map if we send in a bipartite state to it by keeping one part unaffected and act the map on the other
part. This is exactly why ∥T∥⋄ ≥ ∥T∥1.
This tells us a very interesting result by simply extending the Holevo-Helstrom bound.
Theorem 4.3 (Holevo-Helstrom bound for quantum maps). The error probability in trying to distinguish two CPTP
maps E0 :Mn(C) →Mm(C) and E1 is bounded as follows.

Perr ≥
1

2
(1− ∥E0 − E1∥⋄) (36)

The state used as probe to saturate the bound must satisfy the following

ρ = argmax
ρ

(∥(E0 ⊗ In)(ρ)− (E1 ⊗ In)(ρ)∥1) (37)

The measurement must be the Helstrom POVM {P, I− P} such that

P = argmax
0≤P≤I

(Tr(P ((E0 ⊗ In)(ρ)− (E1 ⊗ In)(ρ)))) (38)

Proof. We know that there must be some state ρ ∈Mn2(C) such that

(∥(E0 ⊗ In)(ρ)− (E1 ⊗ In)(ρ)∥1 = ∥E0 − E1∥⋄
This follows from the variational definition of diamond norm in equation 34. Now we essentially just follow the
Holevo-Helstrom bound for distinguishing the two states (E0 ⊗ In)(ρ) and (E1 ⊗ In)(ρ).
To prove that this is the true minimum in the sense that entangling with an even larger dimension state will not
produce more distinguishability, we impose lemma 4.2, property 1. This says that ∥T ⊗ IG∥ = ∥T ⊗ IN ∥ as long
as dimG ≥ dimN . This shows that we do not gain any more distinguishability on moving to a higher dimension
showing that the minimum error probability is captured truly by the diamond norm.

This shows that the diamond norm has a fundamental physical interpretation in the form of minimum error probability.

Algorithm 2: Variational quantum algorithm to estimate diamond distance
Take input as E0 and E1 which are CPTP maps from density matrices in H to density matrices in H.
Initialize θθθ and ϕϕϕ which are parameters for U(θθθ) and V (ϕϕϕ).
Define convergence condition for cost function T est

ϕϕϕ (θθθ).
while T est

ϕϕϕ (θθθ) has not converged do
for θθθi = θθθ +∆θθθi and ϕϕϕi = ϕϕϕ+∆ϕϕϕi for some set of ∆θθθi and ∆ϕϕϕi do

Run circuit with parameters θθθi and ϕϕϕi with CPTP map as E0 ⊗ In
Using measurements on q0 obtain value of p0.
Run circuit with parameters θθθi and ϕϕϕi with CPTP map as E1 ⊗ In
Using measurements on q0 obtain value of p1.
Assign TDϕϕϕi

(θθθi) = |p0 − p1|
end
Using TDϕϕϕi

(θθθi) update θθθ and ϕϕϕ with a classical optimizer.
Check convergence of T est

ϕϕϕ (θθθ).
end
Assign estimated diamond norm = T est

ϕϕϕ (θθθ) return final values of θθθ, ϕϕϕ and estimated diamond norm.

This is pretty much equivalent to algorithm 1 with the exception that we feed in a map of form E0 ⊗ In instead. The
importance of this algorithm is that it gives a method to find the diamond distance between two CPTP maps which
is possible with low depth circuits as well. There are existing ways to find the diamond distance in O(poly(dimH))
since it is a convex optimization problem [5] but this clearly will grow exponentially if we consider n qubits. Our
algorithm is clearly scalable for such situations and can produce results using a Hardware efficient ansatz.
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Figure 2: Estimation for diamond distance between the identity map and an arbitrary 2 qubit unitary map. (a) Shows
how well the value of estimated T est

ϕϕϕ (θθθ) and the true trace distance T (E0(ρθθθ), E1(ρθθθ)) for the optimized state matches
against the analytical value. (b) Shows how well the estimated trace distance matches against the true trace distance
for the state ρθθθ

Figure 3: Estimation for diamond distance between the identity map and a phase flip map. (a) Shows how well the
estimated trace distance matches against the true trace distance for the state ρθθθ. (b) Shows the result of the estimated
diamond norm against the probability of phase flip.

Figures 2 and3 show results of simulations for estimating of diamond norm. The diamond distance between a unitary
map and the identity map is the diameter of the circle which is able to contain all the eigenvalues of the unitary
operation [6]. For Kraus maps such as the phase flip map of form E(ρ) = (1− p)ρ+ pZρZ have a diamond distance
of 2p from the identity map [64].
The simulations were carried out using QuTip [33, 32]. The circuit had 5 qubits with one of them being used in the
trace distance estimation subroutine and the other 4 being used for state preparation after which the quantum map is
applied on the first 2 of the 4.

5 Variational quantum illumination

In this section we describe how we apply algorithm 1 in a modified setting to the task of quantum illumination.

5.1 Quantum illumination

The task of quantum illumination presents a quantum hypothesis testing problem with the following hypotheses on the
presence of an object probed by a single photon.
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Figure 4: A figure representing the process of quantum illumination. The probe is a 2 mode state with a signal and
idler component. The idler is unchanged and the signal goes to probe a beam splitter in a bright thermal bath. Most
of the signal will be transmitted away in both cases. The detector receives a 2 mode state over which it does joint
measurements to obtain information about the presence or absence of the beam splitter.

• H0: The object is absent hence the detector only receives photons from background radiation.
• H1: The object is present and behaves like a beamsplitter with some reflectivity η is present and the detector

receives some of the probing photons as well as background radiation.

As it turns out, probing the object using photons that are entangled gives an advantage in the Chernoff bound as shown
in [44]. The importance of this result is that the advantage offered by entanglement holds true even in the regime
of high background radiation and low reflectivity. This advantage is explored in gaussian states that are maximally
entangled in [61]. The state is of the following form

|ψ⟩SI =
∞∑
n=0

√
Nn
S

(NS + 1)n+1
|n⟩S |n⟩I (39)

Here NS is the average photon number per mode. The performance is quantified using the quantum Bhattacharya
bound in [61]. The following bounds hold true for the case of using M copies of either a coherent state with average
signal photon number of NS or the state descried in 39. The reflectivity η ≪ 1 and the background photon radiation
is assumed to be NB ≫ 1.

Perr,QI ≤ e−Mη2NS/NB/2 Perr,CS ≤ e−Mη2NS/4NB/2 (40)
Here Perr,QI is the error probability while using the entangled state and Perr,CS uses unentangled coherent states.
The above result clearly shows that we have atleast a factor of 4 improvement in the performance of an entangled state
compared to unentangled states.
If we take a closer look at the hypotheses H0 and H1, we can define the following maps as the operation.

Eη(ρSI) = TrS(Uη(ρB ⊗ ρSI)U
†
η) (41)

Uη = exp(i sin−1(η)(a†sab − asa
†
b))⊗ II (42)

Here ab, as are the annihilation operators for the background radiation and the signal mode. We can clearly see
that the two maps we wish to distinguish between is E0 and Eη . In this case where η is close to zero, this tasks is
interchangeable with quantum sensing. The task of quantum sensing is fundamentally a parameter estimation task
hence the quantum Fisher information is a very relevant measure here [43, 53]. In a general estimation task we would
perform a set of measurements on a parameterized state to retrieve information on the parameters.
Due to the Cramér-Rao bound, we have a fundamental limit for the precision of an unbiased estimator η̂.

∆η̂2 ≥ 1

MH
(43)

This tells us yet another way to measure the performance of the state. We can write the following expression for the
quantum Fisher information.

H = 2
∑

mn,λm+λn ̸=0

|⟨ϕm|(∂ηρη)|η=0|ϕn⟩|2

λm + λn
(44)
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H ≈ 8
1− F (ρη=0, ρη=δ)

δ2
(45)

Here ρη = Eη(ρ) and ρη=0 =
∑
n λn|ϕn⟩⟨ϕn|. The formula in equation 44 is exact and the formula in equation 45

is an easier to calculate approximation. The importance of this approximation is how it relates to error probability
scaling with Fidelity as highlighted in equation 22. This is mainly explored in [49] where it can be shown that the
error probability also approximately scales with the quantum Fisher information.

1

4
e−MHη2/4 ≲ Perr(ρη=0, ρη) ≲

1

2
e−MHη2/8 (46)

In [56], it is highlighted that the quantum Fisher information of the TMSV as a probe exceeds that of the Coherent
state, but the ratio by which this exceeds begins to approach 1 as the sinal power is increased. In [40], the prospect of
usingN -photon entangled states is explored and they can outperform in certain cases. From the point of view of all the
different cost functions we have, such as the trace distance, the Chernoff bound, the quantum Fisher information and
also the relative entropy, we can have very differing families of states which are optimal for this porblem in different
interpretations.
The optimal strategy for asymmetric error testing is proven to be using n copies of the two modes squeezed vacuum
(TMSV) as the probe [19]. At the same time we have a result for the quantum Chernoff bound [10].

Theorem 5.1 (Optimal probe for quantum illumination). In the limit where η → 0 (η being object reflectivity), the
two-mode probe for quantum illumination that maximizes the quantum Chernoff bound subject to having a constraint
on signal photon number is the TMSV state.

The proof of the above statement can be found in [10]. Hence the TMSV state represents a fundamental limit for two-
mode states when we have a constraint on the signal photon number. There are ways to improve error probabilities
using photon added or photon subtracted TMSV as shown in [20] but the conclusion that TMSV is optimal when
the constraint is on NS still holds. Keeping all these metrics in mind, we progress toward applying our variational
algorithm to this specific problem and see how well our answers stack up against the performance of the two mode
squeezed vacuum.

5.2 A primer for Gaussian quantum optics

In this subsection, we will introduce the basics of Gaussian quantum optics [11] along with certain important properties
that we make use of. The system is composed of n bosonic harmonic oscillators, each with their own annihilation
and creation operators âk, â

†
k for k = 1, . . . , n. We will have the commutation relations [âj , âk] = [â†j , â

†
k] = 0 and

[âj , â
†
k] = δjk. We now will move into a system of units where ℏ = 1. We define the following Hermitian position

and momentum like operations for each mode.

x̂k =
1√
2
(âk + â†k) p̂k =

1

i
√
2
(âk − â†k) (47)

It is clear that [x̂j , p̂k] = δjk. We now define a vector which has each of these operations as a component in the
following equation.

r̂ =


x̂1
p̂1
...
x̂n
p̂n

 (48)

This allows us to define the commutation relations as follows.

[r̂j , r̂k] = iΩjk (49)

Ω =

2n⊕
k=1

(
0 1
−1 0

)
= In ⊗

(
0 1
−1 0

)
(50)

The notation of A ⊕ B is the direct sum between the matrices A and B hence A ⊕ B = diag(A,B). We can then
define a covariance matrix between components of r̂ as follows.

σjk =
1

2
⟨{r̂j , r̂k}⟩ − ⟨r̂j⟩⟨r̂k⟩ (51)
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The importance of defining σ and r̂ is that there is a certain family of n mode bosonic states which can fully charac-
terized by using only σ and r̄ where r̄ = ⟨r̂⟩. More specifically this occurs if the Hamiltonian used to evolve the state
is linear or bilinear in âk and â†k [57]. The canonical relations force the following uncertainty relation to hold.

σ + i
Ω

2
≥ 0 (52)

We can more quantitatively define a Gaussian state by writing a characteristic function of the state [52].

Definition 5.1 (Gaussian state (quantum optics)). A state ρ describing a n mode bosonic system of Harmonic oscilla-
tors is said to be Gaussian if the characteristic function χ[ρ] : R2n → C of ρ is Gaussian.

χ[ρ](Λ) = Tr(ρ exp(−iΛTΩr̂)) (53)

This must be possible to write as follows.

χ[ρ](Λ) = exp(−1

2
ΛTΩσΩTΛ− iΛTΩr̄) (54)

The operation exp(−iΛTΩr̂) is a representation of a displacement in the phase space by the vector Λ which has 2n
real components. We can equivalently express the state using the Wigner function W : R2n → R which is the Fourier
transform of the Characteristic function hence contains all the information in ρ.

W (r) =
1

(2π)n

∫
R2n

exp(−irTΩs)χ(s)ds (55)

An important property of the Gaussian function is that it is a real-valued function and for Gaussian states it is non
negative everywhere [13]. Also the Wigner function is normalized.∫

R2n

W (r)dr = 1 (56)

For Gaussian states the Wigner function takes on the following form.

W (r) =
1

(2π)n
√

det(σ)
exp

(
−1

2
(r − r̄)Tσ−1(r − r̄))

)
(57)

We can see that this is pretty much a Gaussian centred at r̄ with covariance σ and so is clearly an apt description for
our Gaussian state. An important property of the Wigner function is that the trace of the product of two Gaussian
states with covariance matrices σ1, σ2 and displacement vectors r1, r2 is the integral of the product of their Wigner
functions (Σ = σ1 + σ2).

Tr(ρ1ρ2) =
1√

det(Σ)
exp(−1

2
(r1 − r2)

TΣ−1(r1 − r2))) (58)

Definition 5.2 (Gaussian unitary). A unitary function which takes Gaussian states to Gaussian states can be charac-
terized as a symplectic transform which transforms σ and r̄ as follows.

σ → FσFT r̄ → Fr̄ + d (59)

Here d ∈ R2n is a displacement and the matrix F ∈ R2n×2n must satisfy the following condition

FΩFT = Ω (60)

Hence all unitary operations which are generated from a Hamiltonian that is at most quadratic in âk and â†k can be
characterized into phase, displacements, squeezing and beamsplitters. A detailed list of these operations is summarized
in the following table. More generally, we can also introduce positive maps which map Gaussian states to Gaussian
states. We will now use this to propose an algorithm which can do hypothesis testing while working with Gaussian
states.
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Name Operation Symplectic transform (F,d)

Displacement D̂(α) =
⊗n

k=1 exp(αâ
†
k − α∗â) F = I2n, d =

√
2


Re(α1)
Im(α1)

...
Re(αn)
Im(αn)


Beam splitters BS(η) = exp

(
sin−1(η)(a1a

†
2 − a†1a2)

)
F =

( √
ηI2

√
1− ηI2

−
√
1− ηI2

√
ηI2

)
, d = 0

Single mode squeezing S1(ζ) = exp
(
1
2

(
ζ∗â2 − ζ(â†)2

))
F = cosh(|ζ|)I2 − sinh(|ζ|)Sarg(ζ), d = 0

Two mode squeezing S2(ζ) = exp(ζ∗â1â2 − ζâ†1â
†
2) F =

(
cosh(|η|)I2 − sinh(|η|)Sarg(η)

− sinh(|η|)Sarg(η) cosh(|η|)I2

)
, d = 0

5.3 A Gaussian variational quantum algorithm

Gaussian states have a wide array of uses in quantum computing, more specifically in the use of contin-
uous variable quantum computing [22]. Here we will propose a variational algorithm for hypothesis test-
ing using Gaussian modes. The algorithm deals with three modes which we label as q0, qS and qI .

Algorithm 3: Gaussian state variational quantum hypothesis testing with two modes.
Take input as E0 and E1 which are maps from single mode Gaussian states to single mode Gaussian states.
Initialize θθθ and ϕϕϕ which are parameters for U(θθθ) and V (ϕϕϕ).
Define convergence condition for cost function T est

ϕϕϕ (θθθ).
while T est

ϕϕϕ (θθθ) has not converged do
for θθθi = θθθ +∆θθθi and ϕϕϕi = ϕϕϕ+∆ϕϕϕi for some set of ∆θθθi and ∆ϕϕϕi do

Run circuit with parameters θθθi and ϕϕϕi having applied E0 on qS
Using vacuum measurements on q0 obtain value of p0 as ⟨|0⟩⟨0|⟩0
Run circuit with parameters θθθi and ϕϕϕi having applied E1 on qS
Using vacuum measurements on q0 obtain value of p1 as ⟨|0⟩⟨0|⟩0
Assign TDϕϕϕi

(θθθi) = |p0 − p1|
end
Using TDϕϕϕi

(θθθi) update θθθ and ϕϕϕ with a classical optimizer.
Check convergence of T est

ϕϕϕ (θθθ).
end
return final values of θθθ, ϕϕϕ.

This algorithm aims at preparing a state which consists of two modes qS (signal) and qI (idler) and optimizing the state
to prepare the optimal probe for distinguishing map E0 and E1 which is applied on the signal mode qS . The circuit as
shown in figure 5 is essentially the same as the circuit in figure 1 and using the previous results of diamond norm it
should be clear that a 2 mode state will be able to reach the bound in equation 36 for a single mode map.
The algorithm described for estimating diamond norm can be extended to any possible setup since the main working
principle is using the ancillary qubit q0 in algorithm 2 as a substitute for measurements on the actual qubit registers q1
and q2. We could in principle substitute q1 and q2 by bosonic modes and the algorithm will carry out with the same
principle since the Naimark extension example given in equation 25. However, it is largely unphysical to construct
a physical setup which is capable of entangling a qubit to two bosonic modes and moreover the operations will no
longer remain Gaussian.
Instead we propose using an additional mode since experimental realizations with multi-mode bosonic systems have
been demonstrated such as the 100 mode device which reached an average of 45 photons [67]. This additional mode
is either measured over the vacuum state to use for the trace distance estimation protocol.
To examine the case where we do vacuum state overlap, it is important to note that no two Gaussian states are orthog-
onal to each other. The overlap can be made as small as needed, but true orthogonality is impossible and hence we
cannot reach the true canonical Naimark extension [54] if we choose to use only Gaussian operations. Neverthless,
we can get sufficiently close for the task of estimation. The isometry of the canonical Naimark extension in this case
is given as follows.

V = Iq0 ⊗ (
√
Γ)SI + i(−|0⟩⟨1|q0 + |1⟩⟨0|q0 + I− |0⟩⟨0| − |1⟩⟨1|)⊗ (

√
I− Γ)SI (61)

15



Variational quantum hypothesis testing

Figure 5: Description of the quantum circuit for variational quantum illumination. The state is prepared over the signal
and idler mode using an ansatz which consists of displacements and two-mode squeezing. The ansatz shown for the
measurement section consists of displacements and beam splitters. The simulations contain controlled phase gates for
in the measurement section as well. The readout can be either measure the probability it is vacuum or the expectation
value of the parity operator.

On the other hand, we can frame this as trying to perform a measurement on some n mode state by entangling it to a
1 mode system. This can be written as follows.

Tr(V †(P0 ⊗ In)V (|0⟩⟨0| ⊗ ρ)) = Tr(Pρ) (62)
Here P0 is a a projection which is in L(H), the set of linear operators from H to H and H is the Hilbert space of a
single mode of light. P is a projection in L(H⊗n) and ρ is a density operator in D(H⊗n) (set of density operators
in L(H⊗n)) and In is the identity operator in L(H⊗n). Since we want the above equation to hold for all ρ, we can
rewrite it as follows.

V †(P0 ⊗ In)V = I1 ⊗ P (63)
Here we are applying a transformation from one linear operator to another which means that as long as the norm of
both P0 ⊗ In and I1 ⊗ P are equal, we can find a V . We can construct a V = (SWAP1,2 ⊗ In−1)(I1 ⊗ V ′) where it
performs a swap between the first two modes and then does some unitary V ′ only on the subsystem of n modes. This
transforms the measurement from the space of the first mode to the space of the n modes.

(I1 ⊗ V ′)†(SWAP1,2 ⊗ In−1)
†(P0 ⊗ In)(SWAP1,2 ⊗ In−1)(I1 ⊗ V ′) = I1 ⊗ V ′†(P0 ⊗ In−1)V

′† (64)

This shows that we can construct any projection of form P = V ′†(P0 ⊗ In−1)V
′† where V ′ is Gaussian since the

swap operation between two modes can be trivially represented as a passive Gaussian operation. This recipe shows us
that while we may not be able to construct the canonical Naimark extension of the optimal POVM, we can construct a
Naimark extension that performs a POVM on the n mode subspace using a single-mode ancillary measurement.

Hence we can estimate trace distance overlap with vacuum which is also physically realizable as a measurement using
a photon counter for measurement where the two outcomes are either zero photon number or non-zero [22]. The
simulations were carried out using the Strawberry Fields [12, 38] and The Walrus [26] python packages.

5.4 Results from Fock simulations

Additionally instead of using q0 as a bosonic mode, one could use a qubit in its place and allow the use of non-Gaussian
operations. This can be simulated in the Fock space. For this the state preparation part is the same as the Gaussian
circuit’s state preparation. In the part where the measurement is optimized operations such as a controlled two-mode
squeezing and controlled beam-splitters where the control is given to the qubit q0.
These simulations are included in this report for the sake of completeness to show that there are alternative ways of
applying the algorithm developed here.

6 Conclusion

The novel algorithm presented in this report shows capabilities in offering ways to distinguish quantum maps and has
been applied to the task of quantum illumination and shows promising results. The models used here can be extended
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Figure 6: Simulation results using Gaussian backend with vacuum measurement. (a) Compares chernoff bound of
the optimized state to TMSV, (b) compares trace distance (blue dots are true trace distance and green triangles are
estimated trace distance), (c) compares QFI and (d) shows fidelity of the optimized state to TMSV.

Figure 7: Noise robustness of variational quantum illumination. The quantity on y axis is the ratio of T ve
ϕϕϕ (θθθ) to the

value it takes with zero gate error. These are results that have been optimized with the constraint that NS = 0.1
following which the optimized results were then simulated with Gaussian noise for each parameter to test robustness.
The values plotted are the average after 500 runs with the Gaussian noise with percentage of gate error being the
variance.

for tasks such as quantum reading [55] and quantum ranging [68] as well and more generally for larger scale quantum
map discrimination on qubits. While the states we obtain in our optimization closely match the results of the two
mode squeezed vacuum, an interesting thing to observe is that there is a clear manifold of optimality here of which the
TMSV is only one part.
There were alternate optimizations done where 2 mode squeezing resources were not given to the state preparation
but 1 mode squeezing resources were. In these it was able to prepare states which have exactly the same performance
as the TMSV for the Helstrom bound but fell short in the Chernoff bound and more interestingly were very different
from the TMSV. These states also were putting more photons into the idler than into the signal since the signal
photons had an equality constraint in them but the idler photons did not have any constraints to follow. This was an
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Figure 8: Simulation results of variational optimization for the task of quantum illumination which prepares the state in
two bosonic modes (simulated in the Fock space) and uses an ancillary qubit for obtaining measurement probabilities
on the two modes to use to optimize the estimate for trace distance. (a) Shows how the optimized state’s Chernoff
bound κ compares to that of the TMSV state, (b) compares the true trace distance, (c) compares the quantum Fisher
information and finally (d) shows the fidelity of the prepared state to TMSV.

interesting consequence since the circuit could have prepared an exact TMSV but clearly chose not to which means
the optimization landscape may have a lot of rich information.
It must be noted that all these simulations were done for extremely low depth circuits which could have had much more
layers. This is especially relevant in the trace distance estimation section since we limit ourselves to one displacement
followed by a controlled phase gate and then beam splitters. An important study to conduct on this would be the
expressibility since there could be lots of uses for expressible ansatzes in continuous variable quantum computing [37]
and extending this to study quantum sensing like tasks for Gaussian states [23].
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