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Mahadevan Subramanian

Tutorial 1

Useful formulae for this tut: Planck’s law

u(λ)dλ =
8πhc

λ5

1

exp( hc
λkBT

)− 1
dλ (1)

u(ν)dν =
8πhν3

c3
1

exp( hν
kBT

)− 1
dν (2)

Note that u(ν) is energy density per unit frequency and u(λ) is per unit wavelength and so the quantities u(ν)dν
and u(λ)dλ represent the same thing which is increment of energy density for the small change in that variable
however these variables change in opposite signs so for showing equality we have u(λ)dλ = −u(ν)dν.
Radiant intensity per unit wavelength per solid angle is I(λ) = c

4u(λ) and this relation just related the intensity
to energy density for this kind of radiation. This is the formula followed in the reference book (Serway) so I will
be sticking to this and also you would have received a handwritten note with it’s derivation. The same relation
holds for intensity per unit frequency.

Q3

(a) We wish to maximize u(λ, T ) at fixed T so essentially make
du

dλ
= 0 and

d2u

dλ2
< 0. Now we can calculate

the following:

du

dλ
=

8πhc

λ6

1

exp( hc
λkBT

)− 1

(
hc

λkBT
exp( hc

λkBT
)

exp( hc
λkBT

)− 1
− 5

)
To solve this equal to zero one can use a generic scientific calculator (the CASIO fx-991EX will be the best

choice) where one can use the table mode set f(x) =
xex

ex − 1
and g(x) = 5 and you will get x ≈ 4.97 (you can

also sort of guess it from the form of equation here). So we get that
hc

λmaxkBT
= 4.97 and clearly from the

graph of u(λ) versus λ there is only one maxima so this must be it so we get

λmax =
hc

4.97kBT

(b) Simply substitute the expression we get

u(λmax, T ) =
8πT 5hc

α5

1

exp( hc
αkB

)− 1

Q5
(a) Rayleigh Jean’s law holds correct in the limit of small frequency so using that on planck’s law and we get
exp( hν

kBT
)− 1 ≈ hν

kBT
so just substitute that in planck’s law and we have

U(ν, T )dν =
8πν2

c3
kTdν

(b) So essentially we have u(ν0) = 0.1× U(ν0) where u is the measured value and U is the value from rayleigh
jeans, so you just gotta solve this and cancel the useless terms and you should get

hν
kBT

exp( hν
kBT

)− 1
= 0.1
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(c) Again using a scientific calculator we get hν
kBT
≈ 3.61

Q7
Stefan’s law is used to describe the total energy emitted per unit area of the blackbody at a certain temperature
and that would be the integral over all wavelengths of the intensity I(λ, T ) so we get

etotal =

∫ ∞
0

I(λ, T )dλ =

∫ ∞
0

2πhc2

λ5

1

exp( hc
λkBT

)− 1
dλ

Now substitute x = hc
λkBT

and this transforms to

etotal =
2πk4

BT
4

c2h3

∫ ∞
0

x3

ex − 1
dx

Now you may not be familiar with this integral but for now while this should have been mentioned in the

question take

∫ ∞
0

x3

ex − 1
dx =

π4

15
using this we finally get:

etotal =
2π5k4

B

15c2h3
T 4

Taking σ =
2π5k4

B

15c2h3
we will get the good old stefan boltzmann equation:

etotal = σT 4

And you can remove the value of σ and it would come to be 5.67 × 10−8Wm−2K−4 which you probably re-
member from your JEE days. For those interested in seeing how one can evaluate the integral normally refer
here. You will learn this if you take any complex analysis course in the future.

2

https://math.stackexchange.com/questions/99843/contour-integral-for-x3-ex-1


Tutorial 2

Useful formulae for this tut: Compton’s effect

λ′ − λ = λc(1− cos(θ)) (3)

λc =
h

m0c
(4)

cot(θ/2) =

(
1 +

λc
λ

)
tan(φ) (5)

Apart from this using momentum and energy conservation should easily get you through this topic.

Q1
We know that λ′ − λ = λc(1− cos θ) and θ = 90◦ and we are given that the wavelength of scattered photon is
twice of that of the incoming photon so.

λ′ − λ = λc, λ
′ = 2λ

So we have λ = λc and from that we get ν = c/λ = 1.23× 1020Hz.
For calculating angle of electron we know it has two perpendicular components of momentum one which is twice
of other (why?). From that we get that it makes an angle of arctan(0.5) with horizontal and that is approx 26.6◦

Q4
(a) Increase in wavelength is given by h

m0c
(1− cos θ) so here we have that value for 45◦ as 7× 10−14m so that

gives us
h

m0c

(
1− 1√

2

)
= 7× 10−14

Which on solving gives m0 ≈ 9.23× 10−30.
(b) We know wavelength of the scattered photon in second case at θ = 60◦ is 9.9 × 10−12m so if incoming
wavelength is λ for the first experiment (making it 2λ for the second one since E2 = E1/2) then we have

9.9× 10−12 − λc(1− cos(60◦)) = 2λ

Solving this we get λ = 4.89× 10−12m.

Q6
So first off the question in the actual tut is framed somewhat incorrectly the actual question is as follows:
Consider Compton Scattering. Show that if the angle of scattering increases beyond a certain value of θ0, the
scattered photon will never have energy larger than 2m0c

2, irrespective of energy of incident photon. Find the
value of θ0 (Source: last year’s tut).
For maximum energy of scattered photon we need λ′ minimized

λ′ − λ = λc(1− cos(θ))

To minimize λ′ we can take λ = 0 in theory.

λ′min = λc(1− cos(θ))

We have been given that the maximum energy for this situation is 2m0c
2 as long as θ > θ0 so this gives

hc

λ′min
= 2m0c

2

This gives us that θ0 = 60◦ making θ smaller increases the energy.

Q7
(a)

λ2 − λ1 = λc(1− cos(θ))

λ3 − λ2 = λc(1− sin(θ))

We add this up and write sin(θ)+cos(θ) =
√

2 cos(θ− π
4 ) and this gives θ ≈ 59.83◦ since it is given to be greater

than π/4.
(b) You will get from the given λ2 value that λ1 = λ2 − λc/2 ≈ 65.57× 10−12m. Use 5 after this and you will
get φ ≈ 60◦. Do derive equation 5 using energy conservation and check for yourselves.
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Tutorial 3 & 4

Useful formulae for this tut:
De broglie wavelength:

λ =
h

p

Einstein solid expression for internal energy and einstein temperature:

U =
3Nhν

e
hν
kBT − 1

ΘE =
hνE
kB

Specific Heat

Q3
So in graphite which is a solid we only have vibrational degrees of freedom. We have a total of three independent
directions for vibration each which will contribute aR to the Cv. Now we are given that hωx,y >> 300kB >> hωz
so that would mean that we have enough energy for vibration along z direction but not for other directions
hence we get that Cv = R.

Q4
We will start at 5R/2 since its given that the rotational excitation energy is negligible. We use kB =
8.62 × 10−5eV · K−1. For the first vibrational mode we will need kBT = E so this gives us T ≈ 139.21K.
The next transition will be at 4T ≈ 556.84 where we get a +R to Cv and then 6T ≈ 835.27 where we get a
+2R to Cv since two degenerate energy levels of vibration. Refer figure below.

Figure 1: Cv vs. T for CO2

De Broglie

Q2
So we have quantized angular momentum for a hydrogen atom

mvr =
nh

2π

2πr =
nh

mv

Now if we say that electron has de broglie wavelength of λ then we essentially have

2πr = nλ

Note that n is an integer so we essentially have that an integer times wavelength equals the circumference of
our orbit which is exactly what happens in a standing wave where essentially your wavelength repeats for an
integer number of times over a given length. The wave would look odd but would be a standing wave over the
circumference and is called a standing circular wave.
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Q4
For a photon p = E/c so we have

λph = hc/E = 0.2475 nm ≈ 0.25 nm

For the other two just use p =
√

2mE so we have

λe =
hc√

2× 500 keV× 5 keV
≈ 0.0175 nm

λn =
hc√

2× 1000 MeV× 5 keV
≈ 3.92× 10−4 nm
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Tutorial 5

Useful formulae for this tut: phase and group velocities

vp =
ω

k
(6)

vg =
dω

dk
(7)

vg = vp + k
dvp
dk

(8)

In three dimensions we write

~vg = ∇kω =

(
∂ω

∂kx
,
∂ω

∂ky
,
∂ω

∂kz

)
(9)

Q1
(a) Resultant wave is

y = y1 + y2 = 0.004 cos(7.8x− 390t) cos(0.2x− 10t)

vp =
ω + ∆ω

k + ∆k
= 50 m/s

vp =
∆ω

∆k
= 50 m/s

(b) The group wave is the cos(0.2x− 10t) part and so clearly ∆x = 5π m. We can also see that ∆k = 8− 7.6 =
0.4 m−1 so we get that ∆x∆k = 2π

Q4
Since we know that k = 2π/λ we get that

vp =
c

A+Bk2

From this we get

ω = kvp =
ck

A+Bk2

(a)

vg =
dω

dk
=

(A−Bk2)

(A+Bk2)2

(b) Given λ = 0.4 µm. Using this and given constants we getBk2 = 0.0625. Hence we get vp = c/(1.7+0.0625) ≈
0.567c and vg = 0.527c. The vg is more important since it gives the velocity of the group wave and if we treat the
light as photons (essentially the wave packets) then the velocity of the wave packets in this dispersive medium
will be that value. Also phase velocity cannot actually be used for ”sending” information since it has the same
value throughout space.

Q5
Given

−ω2m+ 2βx(1− cos(kxax)) + 2βy(1− cos(kyay)) = 0

From this expression we get
∂ω

∂kx
=
axβx sin(kxax)

mω

∂ω

∂ky
=
ayβy sin(kyay)

mω

So we get

~vg =
∂ω

∂kx
î+

∂ω

∂ky
ĵ =

axβx sin(kxax)̂i+ ayβy sin(kyay)ĵ√
m(2βx(1− cos(kxax)) + 2βy(1− cos(kyay)))

The angle it makes with x-axis would be

θ = arctan

(
axβx sin(kxax)

ayβy sin(kyay)

)
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Tutorial 6

Useful formulae for this tut: Fourier transform and uncertainty principle

g(k) =
1√
2π

∫ ∞
−∞

f(x)e−ιkxdx (10)

f(x) =
1√
2π

∫ ∞
−∞

g(k)eιkxdk (11)

∆px∆x ≥ ~
2

(12)

∆E∆t ≥ ~
2

(13)

∆Lx∆Ly ≥
~
2
|〈Lz〉| (14)

Equation 14 is essentially cyclic and not in portion but ahead you may get an idea of why this relation exists.

Fourier Transform

Q1
(a)

−3 −2 −1 1 2 30
x

f(x)

Figure 2: f(x) = e−α|x| versus x

(b) f(x) will attain half it’s max value at x = 0 which is of value 1 so for half the max we get x = ± ln(2)/α.
(c) Here whether you use +ιkx or −ιkx you will get the same answer and that would be

g(k) =

√
2

π

α

α2 + k2

I have taken the 1√
2π

also for getting this answer (d)

−3 −2 −1 1 2 30
k

g(k)

Figure 3: g(k) =

√
2

π

α

α2 + k2
versus k

(e) g(k) reaches it’s maximum value at k = 0 which is 1
α

√
2
π and so for reaching half it’s max value we will have

k = ±α.
(f) We have from (b) and (e) that ∆x = 2 ln(2)/α and ∆k = 2α so we have ∆x∆k = 4 ln(2)

Q4
A(k) over here essentially represents weights of each cos(kx− ωt) for forming y(x, t). From the given A(k) we
get that

y(x, t) =

∫ k0+ ∆k
2

k0−∆k
2

A cos(kx− ωt)dx =
A

x
sin

(
∆kx

2

)
cos(k0x− ωt)

The envelope part would be defined by yg = A
x sin

(
∆kx

2

)
since cos(k0x − ωt) is the oscillatory part. The

minimum for the envelope would be where |yg| is minimised since that is the amplitude for the phase wave
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Figure 4: y(x, t) versus x at t = 0

and that defines the actual envelope. This is minimised at yg = 0 and we can clearly see that happens at the
following for the first time

∆kx

2
= π

Hence for getting the first minimum you will get x = 2π
∆k and the central maximum is clearly x = 0 so using

this we get

∆x =
2π

∆k

And so we get that ∆x∆k = 2π which is clearly greater than 0.5 so we have verified the uncertainty principle.

Uncertainty Principle

Q8
(a) Diameter of 10−14 m means that ∆x = 10−14/2 which is error in the radial coordinate of electron. Using
uncertainty principle we get that the minimum error in radial momentum is ∆p = 1.05× 10−20 kg m s−1 or we
can say that pc = 19.69 MeV. We can take average of momentum to be zero since it’s in a orbit and we know
that m0c

2 = 0.51 MeV so we get

E =
√
p2c2 +m2

0c
4 ≈ 19.7 MeV

This gives us KE = 19.7 − 0.51 = 19.19 MeV which is much larger than the observed kinetic energies which
are in order of 1 MeV for an electron in an atom hence disproving existence of the electron in the nucleus.
Similarly for the proton the momentum will be the same and m2

c = 938.37 MeV so
KE =

√
p2c2 +m2

0c
4 −m0c

2 = 0.21 MeV.
(b) For a harmonic oscillator we have the following

〈E〉 =
1

2
k〈x2〉+

〈p2
x〉

2m

But we know that 〈x〉 = 〈px〉 = 0 so then we have the following using AM-GM inequality

〈E〉 =
1

2
k(∆x)2 +

(∆p)2

2m
≥
√
k

m
(∆x)2(∆p)2

But we know that k
m = ω2 which is the harmonic oscillator frequency. Using the uncertainty principle we get

another lower limit as

〈E〉 ≥
√
k

m
(∆x∆p) ≥ 1

2
~ω =

1

2
hf

So 〈E〉min = 1
2hf which is ground state energy. Note that inequality becomes equality for a Gaussian wave

packet and on solving Schrodinger equation for a harmonic oscillator, the ground state comes out to be Gaussian
(you will see this come ahead).
(c) Let the radius be some a then we have ∆x = a and we will have ∆p ≈ ~/a. We will take average of p to be
zero since it’s an orbit so then p ≈ ∆p. The expression of energy will then be

E =
p2

2m
− e2

4πε0a
=

~2

2ma2
− e2

4πε0a

To minimise this we will make
∂E

∂a
= 0 and you can see that this will happen at

a =
4πε0~2

me2
≈ 0.529× 10−10 m
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Q10
(a) For the collision we will conserve the momentum first. Since photon is emitted with energy E that means
p = E/c of the photon. This means the atom would get the exact same momentum but in opposite direction

to conserve momentum so we get that it will move with velocity of v =
E

mc
this gives recoil energy of

Erecoil = mv2/2 =
E2

2mc2

(b) We have been given ∆t = 10−8 s so we can use the uncertainty relation as

∆E ≥ ~
2∆t

So we get the minimum ∆E = 0.53× 10−26 J = 3.3× 10−8 eV from here and so the spectral line width would
be 2∆E since energy lies between E −∆E and E + ∆E which is 6.6× 10−8 eV.
(c) We essentially want Erecoil 2∆E. So we will have

E2

2mc2
= 6.6× 10−8 eV

This gives us E = 111.35 eV.
(d) So first let’s discuss what resonant absorption theory is (this is not part of your portion exactly as in such a
question will not come in your exams). When a photon causes a energy level shift by E0 in the atom, the energy
of photon will be greater than this since the atom will also have some kinetic energy given to it. Similarly if we
have an excited state go down by E0, the emitted photon would have energy less than E0 since the atom will
have some kinetic energy as recoil as the photon is emitted. What we want for resonant absorption is essentially
something like a photon enters, excites one atom which then comes back to ground state and that released
photon excites another atom and so on. This can only happen if that additional kinetic energy lies within that
error range of the spectral line and so we want the recoil energy to be same order as the spectral line width so
that way the extra energy required in recoil compared to actual line width will be adjusted in the error of the
actual E value. You can read more about it here.

Q12

(a) We have been given that it is a non relativistic electron so kinetic energy is simply
p2

2m
. Taking ∆x = a we

get minimum ∆p =
~
2a

. Taking p = ∆p we get that

KE =
p2

2m
=

~2

8ma

(b) Given that ∆x = h
mv so we can use the uncertainty relation and we will see that ∆v = v

4π hence they have
the same order which is mostly what the question meant here.
(c) We know that v =

√
2E/m = 8.39× 106 m/s hence ∆v = v

4π = 6.68× 105 m/susing the result of (b)
(d) As it enters the hole it will undergo diffraction. For the hole we have r = 10−6 so ∆x = 2r = 2× 10−6 m.
Using this we have ∆px = ~/(2∆x) = 2.6× 10−27 kg m/s. Now note that this is an error in momentum along
the component along the plane of the hole. Since we have E = 0.2 keV we know that p =

√
2mE = 7.6× 10−24

kg m/s so error in the component of this along plane of hole is very small in comparison to this so under that
assumption we can conclude

θ ≈ px
p

This gives us that

∆θ ≈ ∆px
p

= 3.4× 10−4 rad
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Tutorial 7

Useful formulae for this tut: Schrödinger’s equations. Here Ĥ is the hamiltonian of the system. It’s essentially

− ~2

2m
∇2 + V for a single particle.

Ĥψ(x, t) = Eψ(x, t) the TISE (15)

ι~
∂ψ(x, t)

∂t
= Ĥψ(x, t) the TDSE (16)

Q1
We have been given that

Ĥφn(x) = Enφn(x)

So for the given ψ(x, t) =
∑
n Cnφn(x) exp(−ιEnt/~) we can see that

ι~
∂ψ(x, t)

∂t
=
∑
n

CnEnφn(x) exp(−ιEnt/~)

But Ĥφn(x) = Enφn(x) so we get that

ι~
∂ψ(x, t)

∂t
=
∑
n

CnEnφn(x) exp(−ιEnt/~) =
∑
n

CnĤφn(x) exp(−ιEnt/~) = Ĥψ(x, t)

Hence it satisfies the TDSE. Let’s assume that TISE satisfies for ψ(x, t), we can see that then we should have

Ĥψ(x, 0) =
∑
n

CnEnφn(x) = Eψ(x, t)

This gives us ∑
n

Cn(En − E)φn(x) = 0

If we have φn(x) as distinct solutions, they must have unique eigen values and must form an orthogonal space
since Ĥ is a hermitian operator (you can find a good explanation of why this is true here) hence this is not
possible to be satisfied hence we have that ψ(x, 0) doesn’t satisfy the TISE.

Q5

Ĝφ(x) = kφ(x)

ιh
dφ(x)

dx
= (k −Ax)φ(x)

Solving this gives us

φ(x) = exp

(
−ι
h

(
kx− Ax2

2
+ c

))
We have been given that φ(x) is even however that is only possible if k = 0 so we only have one eigen value and
that is k = 0.

Q6
The probability of finding the particle in an interval x to x+ dx is φ∗(x)φ(x)dx so we are given that at x = 2a
this interval had 100 particles measured in it so

A2 exp(−2(2a)2/a2)dx =
100

N

NA2dx = 100e8

So at x = a we have the number of measurements as

N(A2 exp(−2)dx) = 100e6

Q7
This is not normalized so to normalize we will have to rewrite it as

ψ(x) =
1√
10
ψ1(x) +

3√
10
ψ2(x)

Now to observe P1 we need the wavefunction to collapse to ψ1(x) and the probability of that is proportional to

the square of it’s coefficient and since we have normalized it, the probability of observing P1 is simply
1

10
.
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Tutorial 8

Useful formulae for this tut:

p̂ = −ι~ ∂

∂x
(17)

Ê = ι~
∂

∂t
(18)

Q5
We have been given the wave function as Ψ = Aeι(kx−ωt). We need expectation value of square of momentum
squared which is essentially 〈p4〉

〈p4〉 =

∫∞
−∞Ψ∗~4 ∂4

∂x4 Ψdx∫∞
−∞Ψ∗Ψdx

But we know that
∂Ψ

∂x
= ιkΨ and so

∂4Ψ

∂x4
= k4Ψ and using this we get

〈p4〉 =

∫∞
−∞Ψ∗~4k4Ψdx∫∞
−∞Ψ∗Ψdx

= ~4k4

∫∞
−∞Ψ∗Ψdx∫∞
−∞Ψ∗Ψdx

= ~4k4

The conclusion we can draw from this solution is that it is composed of only one eigenfunction of the momentum
operator and hence only can give one momentum value on measurement and so we would essentially have
〈pn〉 = 〈p〉n since our statistic has only one value which will always be attained on measurement.
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Tutorial 9

Useful formulae for this tut: Particle in an infinite well from x = 0 to x = L, eigen functions and energy values:

φn(x) =

√
2

L
sin
(nπx
L

)
(19)

En =
n2π2~2

2mL2
(20)

Q1
We know that En is proportional to n2 and so the limit of high energy just means very large n. Now assuming
that the state is an eigenfunction we can write probability as

P =

∫ a+b

a

|φn(x)|2dx =
2

L

∫ a+b

a

sin2
(nπx
L

)
dx =

1

L

∫ a+b

a

(
1− cos

(
2nπx

L

))
dx

On evaluating the integral we get

P =
b

L
− x

2nπx

(
sin

(
2nπ(a+ b)

L

)
− sin

(
2nπx

L

))

For large n the second term would go to zero and so P ≈ b

L
.

Q3
The clearest way is to just plot how |φ3(x)|2 versus x looks like The probability would be in proportion to the

Figure 5: |φ3(x)|2 versus x

are under the graph from 0 to L/6 and it is very clearly equal to 1/6 from this. To verify we can check that the
following holds

P =

∫ L/6

0

2

L
sin2

(
3πx

L

)
=

1

6

Q7
(a) First we represent ψ(x, 0) in terms of the eigen functions

ψ(x, 0) =
2√
L

sin

(
3πx

2L

)
cos
(πx

2L

)
=

1√
2

(√
2

L
sin
(πx
L

)
+

√
2

L
sin

(
2πx

L

))
=

1√
2

(φ1(x) + φ2(x))

Hence solving the TDSE each eigen function would have a exp(−ιEt/~) multiplied to it of that eigen functions
energy value. So we would write it as

ψ(x, t) =
1√
2

(√
2

L
sin
(πx
L

)
exp

(
−ιE1t

~

)
+

√
2

L
sin

(
2πx

L

)
exp

(
−4ιE1t

~

))
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Where E1 =
π2~2

2mL2

(b) At any given time the probability for finding particle between L/4 and L/2 would be

P =

∫ L/2

L/4

|ψ(x, t)|2dx

which we can write as

P =

∫ L/2

L/4

1

2

(
φ1(x) exp

(
ιE1t

~

)
+ φ2(x) exp

(
4ιE1t

~

))(
φ1(x) exp

(
−ιE1t

~

)
+ φ2(x) exp

(
−4ιE1t

~

))
dx

On simplification this becomes into

P =
1

2

∫ L/2

L/4

(φ1(x)2 + φ2(x)2 + 2φ1(x)φ2(x) cos(3ιE1t/~))dx

And to write more properly this would be

P =
1

L

∫ L/2

L/4

(
sin2

(πx
L

)
+ sin2

(
2πx

L

)
+ 2 sin

(πx
L

)
sin

(
2πx

L

)
cos(3E1t/~)

)
On evaluating this we get

P =
1

4
+

1

4π
+

4−
√

2

3π
cos

(
3π2~t
2mL2

)

Q8
(a) We essentially have some En = 1µJ and so we just do

n2π2~2

2mL2
= 10−6

On putting the value we will get n ≈ 1.35× 1020

(b) We can clearly see that n is a pretty darn large number so using the logic from Q1 we can directly conclude
that this would be 0.1 probability.
(c) Since n is large the difference between the next level would be ∆E = En+1−En = ((n+1)2−n2)E1 ≈ 2nE1

and so we find that value to be

∆E ≈ nπ2~2

mL2
= 1.47× 10−26 J

At room temperature kBT ≈ 4.14× 10−21 J which shows that at room temperature the spectra of energy levels
look quasi-continuous for this dust particle.

13



Tutorial 10

Q1
Since these are bound states we get the condition that E < V2 and E < V1 (why?). So we now define three
regions, I is x < 0, II is 0 < x < L and III is L < x. Our wavefunction would take the following values as per
region

ψI(x) = Aek1x

ψII(x) = B sin(k2x) + C cos(k2x)

ψIII(x) = De−k3x

Here k1 =
√

2m(V1 − E)/~2, k2 =
√

2m(E)/~2, k3 =
√

2m(V2 − E)/~2 Now we apply the magical boundary
conditions that ψ is continuously differentiable. So we get the following equations for between I and II

A = C

Ak1 = Bk2

And
B sin(k2L) + C cos(k2L) = De−k3L

−Ck2 sin(k2L) +Bk2 cos(k2L) = −Dk3e
−k3L

So using these four equations we can write the following equation after elimination (just divide fourth equation
by third and then subsitute everything in terms of C and after rearranging you will get this)

tan(k2L) =
k3k2 + k1k2

k2
2 − k3k1

Now if we apply V1 →∞ then k1 also will go to infinity and we will then get

tan(k2L) =
−k2

k3

And you can see that this is just the anti-symmetric solutions of a symmetric finite well of length 2L centered
at x = 0 and that makes sense if you see that x = 0 should be a node for the wavefunction.

Q2
(a) Let us again break this into three regions, I is −2L < x < −L, II is −L < x < L and III is L < x < 2L. Let
us define k =

√
2mE/~2. Using this we can see that

ψI(x) = A sin(kx) +B cos(kx)

ψII(x) = C

ψIII(x) = D sin(kx) + E cos(kx)

Using boundary conditions of wavefunction being continuously differentiable in (−2L, 2L) and being zero at
±2L due to infinite potential we get

A sin(2kL) = B cos(2kL)

−D sin(2kL) = E cos(2kL)

−A sin(kL) +B cos(kL) = D sin(kL) + E cos(kL) = C

A cos(kL) +B sin(kL) = D cos(kL)− E sin(kL) = 0

From this we can use the first and fourth equation to get the quantization condition as tan(2kL) = − cot(kL)
which can be written as

kL =
(2n+ 1)π

2

(b) Using the previous equation we can see that B = E = 0 and |A| = |D| = C. Hence we can find what value
we should get on finding the norm of wavefunction and then apply normalization condition.∫ 2L

−2L

|ψ(x)|2dx = 2LC2 + 2C2

∫ 2L

L

sin2

(
(2n+ 1)πx

2L

)
dx = 3LC2

14



So we get that C =
√

1
3L

(c) The condition of V0 can be obtained by using the allowed kL values and so

V0 =
(2n+ 1)2π2~2

8mL2

This gives us the two lowest values as V0 = 9.34 eV and V0 = 84.08 eV.
(d) Trivially we can see that 〈x〉 = 0 since ground state is symmetric. You can check that 〈p〉 = 0 by integration.

〈x̂2〉 = 2

∫ 2L

L

x2

3L
sin2(

πx

2L
)dx+

∫ L

−L

x2

3L
dx = L2

(
1− 2

π2

)

〈p̂2〉 = 2
~2π2

4L2

∫ 2L

L

1

3L
sin2(

πx

2L
)dx =

~2π2

12L2

From this we can write ∆x∆p =
√
〈x̂2〉〈p̂2〉 and we can evaluate that to get

∆x∆p =
~
2

√
π2 − 2

3
>

~
2

So we have verified the uncertainty principle.

Q4
If there is an infinite wall at x = 0 then it is necessary that the wavefunction must also have an node at that
point. Now we know that the lowest energy bound state would be the ground state which would be even and
not zero at x = 0. Only the (2n + 1)th excited state would have a node at x = 0 and so the only allowed
energies are 7 eV, 17 eV and 24 eV.

15



Tutorial 11

Q2
In the region where E < V we know that due to boundary conditions, the wavefunction ψ(x) = A exp(−αx)

and from the TISE we can say that α =
√

2m(V−E)
~2 . By putting in values we can see that α ≈ 1.03×1010 m−1.

The final answer would be where the value of ψ is 1/
√

2 times that of what it is at x = 0 and that would be at
x = ln 2

2α ≈ 3.37× 10−11 m.

Q3
(a) Let us divide this into three regions, I is x < 0, II is 0 < x < L and III is x > L. The potential V = E in

region II and zero elsewhere. So we can solve the TISE and obtain the following. k =
√

2mE
~2 here

ψI(x) = Aeιkx +Be−ιkx

ψII(x) = Cx+D

ψIII(x) = Feιkx

We now apply the good old boundary conditions of being continuously differentiable.

A+B = D

A−B = C
−ι
k

F = (CL+D)e−ιkL

F = Ce−ιkL
−ι
k

With some manipulation we can get the following expression

F

A
=

2e−ιkL

2− ιkL

This gives the transmission coefficient to be

T =
|F |2

|A|2
=

2~2

2~2 +mEL2

(b) Using some manipulation we can similarly find the following

B

A
=

kL

−2ι− kL

We can remove the reflection coefficient as

R =
|B|2

|A|2
=

mEL2

2~2 +mEL2

For R = 1/2 we can see that we need kL = 2 from the expression of R hence we have

L =
λ

π

Q4
The claim is not entirely correct for the wavefunction in region I. Since there is another interface where reflection
can happen, we have to also consider ek1x in this region and then accordingly solve the boundary conditions
taking ψI(x) = Ae−k1x + Cek1x and ψII(x) = Be−k2x. Why can’t we just take C = 0? Well if we do, then
the boundary conditions at x = L will be quite problematic since we would have A = Bek1L−k2L and also

A =
k1

k2
Bek1L−k2L. Hence we would actually have some non zero value for C.

16



Q5
(a) As usual we will break this into three regions, I is x < 0, II is 0 < x < d and III is d < x. Let us declare
k1 =

√
2m(9V0)/~2, k2 =

√
2m(4V0)/~2 and k3 =

√
2m(9− n)V0/~2.

ψI = Aeιk1x +Be−ιk1x

ψII = Ceιk2x +De−ιk2x

ψII = Feιk3x

Now we apply boundary conditions
A+B = C +D

A−B = (C −D)
k2

k1

Ceιk2d +De−ιk2d = Feιk3d

Ceιk2d −De−ιk2d = Feιk3d
k3

k2

From given value of d = π~/
√

8mV0, we have k2d = π and so

C +D

C −D
=
k2

k3
=
A+B

A−B
× 2

3

This gives us

1 +
B

A

1− B

A

=

√
9

9− n

We know that reflection coefficient would have to be 0.25 and that gives us B/A = 0.5eιφ and since LHS has to
be real in above equation that forces us to choose ±0.5 and so we get√

9

9− n
= 3 or

1

3

and so n = 8 or −72.
(b) We can calculate and find that for n = 8,

ψI = Aeιk1x +Ae−ιk1x/2

ψII = (9Aeιk2x + 3Ae−ιk2x)/8

ψII = 3Aιeιk3x/2

And for n = −72,
ψI = Aeιk1x −Ae−ιk1x/2

ψII = (11Aeιk2x − 7Ae−ιk2x)/8

ψII = 3Aιeιk3x/2

(c) For n = 8 it is clearly no phase change and for n = −72 there is a phase change of π.

17



Tutorial 12

Q2
(a) Since we are modelling this as a simple harmonic oscillator we can first find the spring’s frequency. We will
use 2k since the spring is between two masses.

f =
1

2π

√
2k

m
= 1.85× 1014 Hz

(b) These states should differ in energy by hf and so this photon has energy 0.76 eV and wavelength 1.62 µm.

Q4
We know that the ground state of the harmonic oscillator is

ψ(x) =
(mω
π~

)1/4

exp

(
−mωx

2

2~

)

The potential energy is essentially V (x) =
mω2x2

2
and so

〈V 〉 =

∫ ∞
−∞

mω2

2

(mω
π~

)1/2

x2 exp

(
−mωx

2

~

)
dx

Substituting a new variable t =
(mω

~

)1/2

x, we can then rewrite this as

〈V 〉 =
~ω

2
√
π

∫ ∞
−∞

t · te−t
2

dt

We now apply integration by parts on this and we would get

〈V 〉 =
~ω

4
√
π

∫ ∞
−∞

e−t
2

dt =
~ω
4

We would have 〈E〉 = 〈KE〉 + 〈V 〉 and since this is the ground state, 〈E〉 = E0 =
~ω
2

and so 〈KE〉 =
~ω
4

.

This also shows how the ground state has minimum ∆p∆x (why?) since it is a Gaussian and previously using
HUP we had found the ground state energy and there we essentially made 〈KE〉 = 〈V 〉 for the ground state to
minimise energy.

Q5
This is pretty much the same question as Q2 except that we just take m instead of 2m since the question states
thats the mass of the oscillator.

(a) The wavelength would be λ = 2πc

√
m

k
= 1.29× 10−4 m.

(b) The ground state energy would be
hc

2λ
= 4.8 meV.
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Tutorial 13

Useful formulae for this tut:

Maxwell Distribution f(E) = A exp

(
− E

kBT

)
Fermi-Dirac Distribution f(E) =

1

1 + e
E−Ef
kBT

Bose-Einstein Distribution: f(E) =
1

e
E

kBT − 1

Statistical Mechanics

Q1
This is a simple PnC question. The ways of choosing 5 balls from the 59 would be

(
59
5

)
and choosing 1 ball

from 35 is
(

35
1

)
and since they are independent this gives us the total as

(
59
5

)
×
(

35
1

)
and the probability would

be
((

59
5

)
×
(

35
1

))−1
.

Q3
Let us first judge the possible energy distributions for the total of 3E. We must note that no two electrons can
be in the same state since they are fermions.
Case 1: all have E, this would have

(
10
3

)
= 120 possible configurations since we need to choose 3 states from

the 10 available states of energy E.
Case 2: one has 2E energy and one has E energy while the remaining one has zero energy. Here we need to
choose 1 from each of the levels and so the number of configurations for this would be

(
10
1

)(
20
1

)(
2
1

)
= 400.

There are no other possible cases and so it is case 1 with 23.1% probability and case 2 with 76.9% probability.

Q5
(a) For this situation we can have three at zero energy and one at 9E or three at 3E and one at zero. Another
case is one each at 0, E, 3E, and 5E so the total cases are

(
4
1

)
+ 4! +

(
4
1

)
= 32 microstates.

(b) If all particles are bosons then they are indistinguishable so we only have three cases each with only one
configuration giving us the answer as 3 microstates.
(c) Fermions would prevent any configuration with a state which would have more than one particle so the only
case is where all have unique energies so that gives only 1 microstates.

Q6
Due to spin degeneracy 10 states essentially become 20 spin states and so the ways of putting three electrons
in these are

(
20
3

)
whereas the ten chairs in a room would be filled in

(
10
3

)
ways by three people.

Q7

Let’s call E0 = π~2

2mL2 . So with varying the nx, ny, nz we can see that the lowest five levels are
3E0 with spin degeneracy of 2
6E0 with spin degeneracy of 6
9E0 with spin degeneracy of 6
11E0 with spin degeneracy of 6
12E0 with spin degeneracy of 2
Now we want a total energy of 18E0. The possible cases are
Case 1: 3E0, 3E0, 12E0 which has 2 configurations.
Case 2: 3E0, 6E0, 9E0 which has 2× 6× 6 = 72 configurations.
Case 3: 6E0, 6E0, 6E0 which has

(
6
3

)
= 20 configurations.

And so they have respective probabilities of 0.02, 0.77 and 0.21 approximately.

Density of States and Fermi Energy

Q1
(a) On considering the spin degeneracy the 0 energy level has 2 states, 2E has 8 states and 3E has 16 states.
With this in mind we can see that the microstates for this configuration are

(
2
1

)(
8
3

)(
16
2

)
= 13440.

(b) With the same logic the microstates for (2, 0, 4) are
(

2
2

)(
8
0

)(
16
4

)
and so the ratio of the probabilities is the

ratio of the number of microstates here which would be 13 : 96.
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Q3

(a) We know that for a 2D particle in a box E =
π2~2

2mL2
(n2
x + n2

y). Let us first move to a new k space where

kx = nxπ/L and ky = nyπ/L and we define an equivalent k =
√
k2
x + k2

y. In k space a constant energy is

represented by a circle centered at origin and we only stay in one quadrant. To find the number of states inside

this circle, we would need to quantify the space one state takes, this would simply be
π2

L2
. So we would get the

number of states in this circle to be N(k) =
πk2/4
π2

L2

=
k2L2

4π
. Since we know E =

~2k2

2m
we can rewrite N as

N(E) =
mEL2

2π~2
but since this is a fermi gas this would be doubled by spin degeneracy so N(E) =

mEL2

π~2
. We

now can write

g(E) =
dN

AdE
=

mL2

L2π~2
=

m

π~2

The g(E) is the density here which would be divided by the area since that is the space over which we are
finding the density.
(b) At T = 0 there will be no fermion with energy greater than EF and f(E) would be 1 throughout and so
since the total fermions are N we have

N = A

∫ ∞
0

g(E)f(E)dE =

∫ Ef

0

g(E)dE = A

∫ Ef

0

m

π~2
dE =

AEfm

π~2

So we get Ef =
Nπ~2

Am
. Also since both g(E) and f(E) are constant over energy, the average energy would

simply be the half of maximum hence average energy is Ef/2.

Q7
For the blackbody radiation we can model it as photons bound inside a 3D well. For this we can first derive
the expression for density of states in momentum space (which is equivalent to the k space). This can be done
similar to how we did it for a 2D well in Q3. The result you would get is

g(p)dp =
4πp2

h3
dp

Since photons can take two polarization values, we would need to multiply this by 2. Then we can note that
for photons ν = pc/h and so we can convert this to frequency space as

g(ν)dν =
8πν2

c3

Now for bosons we would apply the BE statistics and so

n(ν)dν = g(ν)f(ν)dν =
8πν2

c3
1

e
hν
kBT − 1

dν

For getting the expression of energy density we simply would multiply this by hν and so we get the same
expression as 1

u(ν)dν =
8πhν3

c3
1

exp( hν
kBT

)− 1
dν

Q9
(a) Using the formula for the FD statistics we can see that this would be 0.48, 0.27, 0.12, 4.5×10−5 respectively.

(b)When E = Ef +δ, the probability would be
1

eδ/kBT + 1
. For this to be 0.25 we need δ = ln(3)kBT ≈ 1.1kBT

and for 0.75 probability we would need δ = − ln(3)kBT ≈ −1.1kBT
(c) The energy of occupation of state with energy higher than fermi energy by ∆E would have occupancy
probability of

f(Ef + ∆E) =
1

1 + e∆E/kBT
=

e−∆E/kBT

1 + e−∆E/kBT
= 1− 1

1 + e−∆E/kBT
= 1− f(Ef −∆E)

And so we have proven the statement.
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Q11
Since we have to assume that f(E) is pretty much the same as that of T = 0 then probability of occupancy
at any state above Ef energy is zero. We can model the electrons to be trapped in a 3d box potential and so

g(E) = C
√
E where C is a constant. The fraction we need is the following

α =

∫ Ef+kBT

Ef−kBT g(E)f(E)dE∫∞
0
g(E)f(E)dE

=

∫ Ef
Ef−kBT

√
EdE∫ 0

0

√
EdE

=
E1.5
f − (Ef − kBT )1.5

E1.5
f

≈ 1.5
kBT

Ef

Note that had we assumed the f(E) to change very slightly due to a T > 0, the f(EF ) becomes 0.5 instantly
(why?) and we would have to count for Ef +kBT in the integral but since the T is small it would approximately
just become 0.5((Ef +kBT )1.5− (Ef −kBT )1.5) assuming T is very small which gives the same result as before.
For copper this would take value 5.5× 10−3 at 300K and 0.025 at 1360K. For contribution to specefic heat we
will need to make note that only electrons in a certain energy range around fermi energy will contribute to the
specific heat and by convention we will pick ±kBT here as that range since these are the electrons that can
move into a free state when given the energy of kBT . And so the internal energy from this would be

U = αNAkBT =
1.5NA(kBT )2

Ef

And so the specific heat contribution would be C =
∂U

∂T
= 3R

kBT

Ef
. So this gives a contribution of 0.011R at

300K and 0.05R at 1360K to the specific heat.

Fin.
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