
Quantum Information and Computing
Summer of Science 2020

Mahadevan Subramanian
Roll no. 190260027

Mentor: Thariq Shanavas

Contents

1 Introduction 2
1.1 Turing Machine . 2
1.2 The set of computational problems . 2
1.3 Reversible circuits . 3
1.4 Maxwell’s Demon . 4

2 Quantum Mechanics 6
2.1 Postulates of Quantum Mechanics . 6
2.2 Qubits . 6

2.2.1 What is a Qubit . 6
2.2.2 Bloch Sphere . 7
2.2.3 No-Cloning theorem . 8

2.3 Quantum measurement . 8
2.3.1 Projective Measurements . 8
2.3.2 Heisenberg’s uncertainty principle . 8
2.3.3 POVM Measurements . 9

2.4 Density matrices . 9
2.4.1 Partial Trace and Reduced density operator . 10
2.4.2 Schmidt Decomposition . 10

2.5 EPR and the Bell inequality . 11

3 Quantum Circuits 13
3.1 Quantum Gates . 13

3.1.1 Controlled gates . 14
3.1.2 Measurement in circuits and Quantum Teleportation . 16

3.2 Universality in Quantum Computing . 17
3.2.1 Two level unitary operators . 17
3.2.2 Approximating Unitary operators . 18

3.3 Simulation of Quantum systems . 19

4 Algorithms for Quantum Computing 21
4.1 The Quantum Fourier Transform . 21

4.1.1 Phase estimation . 21
4.1.2 Order finding and factoring . 22
4.1.3 Period finding . 24
4.1.4 Discrete logarithms . 24
4.1.5 Hidden subgroup problem . 25
4.1.6 Deutsch-Josza Algorithm and Simon’s Algorithm . 25

4.2 Search algorithms . 26
4.2.1 Grover’s Search Algorithm . 26
4.2.2 Hamiltonian for search algorithm . 28
4.2.3 Quantum Counting . 29
4.2.4 Searching an unstructured database . 30
4.2.5 Optimality of the algorithm and Black box limits . 30
4.2.6 Interesting applications of Grover’s algorithm . 32

References and other links 34

1

Chapter 1

Introduction

In this chapter I will be discussing some important aspects of computer science and logic which builds up
to the quantum computer

1.1 Turing Machine

A Turing machine is an abstract machine, which manipulates symbols on a strip of sufficiently large length
according to a table of rules. Given any algorithm a Turing machine can be built to simulate it. According to
the strong Church-Turing thesis, a function on the natural numbers can be calculated by an effective method
if and only if it is computable by a Turing machine. Essentially it makes claims that all polynomial time
computations can be run on a Turing machine since computable generally refers to polynomial time complexity.
However it was found out that randomized algorithms can carry out certain efficient computations which cannot
be run on a Turing machine clearly violating the strong Church-Turing thesis. This was then modified to being
computable on a probabilistic Turing machine. Now the next step was to actually make a computer that could
essentially carry out randomized algorithms and here is where the idea for quantum computation was born

1.2 The set of computational problems

The complete set of computational problems are classified in different sets based on their complexity.
PSPACE denotes the set of problems that can be solved using a computer of ’small’ size but can do long
computations. P denotes the set of problems that can be solved in polynomial time on a deterministic Turing
machine an example of which is the shortest path algorithm. NP denotes the set of problems which can be
solved in polynomial time by a non deterministic Turing machine essentially requiring a ”lucky guess”. The
set of P lies inside the set NP. NP complete represents a set of NP problems which if solved can essentially
extend to the rest of the NP set. PSPACE is believed to include both NP and P within it but it is not properly
been proven yet. Factoring is believed to lie in NP but not in NP complete and the interesting thing is that
Shor’s algorithm can do factoring in polynomial time using a quantum computer. BQP represents problems that
can be solved in polynomial time using a quantum computer. We don’t yet know the exact extent of this set
but it is believed to include P and and also some parts of NP and also problems that lie in PSPACE but not NP.

2

1.3 Reversible circuits

An important aspect of quantum computation is that the logical circuits use different kinds of gates and
essentially are reversible circuits which work with reversible logic. Reversible logic simply means that if we know
the output we also know the input hence the input and output have a one one mapping. Right off the bat we
know that gates like AND cant be used for this since knowing the output doesn’t always tell us enough to know
the inputs. In a reversible logic circuit the inputs and outputs are equal in number. One can see that in logic
circuit like one of an AND gate essentially has less randomness in the output as to the input. An important
thing to understand is that even though this entropy is in terms of information, it still has an energy price
to pay and hence there is a considerable amount of energy consumed in all devices like computers and mobile
phones, etc. to repay this entropy loss debt and this is the Von Neumann entropy. In an ideal reversible circuit
there is no loss of energy in these terms.
An important gate in reversible circuits is the CNOT gate

Apart from this is the Toffoli gate and the Fredkin gate described in the graphics below.

Toffoli gate

(c) Fredkin gate with c = 1

An important thing to note is that both these gates are universal i.e. we can reproduce any boolean function

3

purely just using only Toffoli gates and Fredkin gates. As seen below we can implement AND and NOT using
Toffoli and Fredkin gates under the following setup

It can be proven that using AND gates and NOT gates and FANOUT one can implement all possible boolean
functions. (NAND gates are also universal). All Quantum circuits use reversible logic since we define quantum
evolution using unitary transforms which are reversible, hence requiring quantum circuits to also have reversible
logic. This is of course broken upon measuring a qubit which will be discussed further ahead.
An interesting build of a reversible circuit is the ”Billiard ball” model for computing. We essentially start of by
considering two billiard balls A and B which for the sake of simplicity are perfectly elastic and everything in
the given environment is ideal. Let A represent the boolean variable which is true if the ball A is approaching
as shown in the figure and is false if it is not present there. Similarly, let B represent the boolean variable which
is true if the ball A is approaching as shown in the figure and is false if it is not present there. One can see that
if one were to observe the positions of the balls after some time depending on the values of A and B we will
get different scenarios and the presence of a ball at these locations can be represented as the following boolean
functions

Interestingly there has been no computer built with the billiard ball model since an error in one stage will
entirely cause the whole computation to fail and error management wouldn’t be that too easy.

1.4 Maxwell’s Demon

This is not directly related to computing in the obvious sense but a very interesting thought experiment
nonetheless. There was a paradox described by Maxwell in which there is a box filled with gas particles with a
middle partition which had a small rolling door. A small demon controls this door and only lets particles with

4

a high velocity pass through the door from one side. This act of the demon will decrease entropy despite the
demon doing little to no work so this violated the second law of thermodynamics.

However an important thing here is that the demon performs measurement over every gas particle as it ap-
proaches the door hence he would have to store the information somehow. Since all information storage is finite
the demon will eventually reach a point where he would have to erase the information and this actually accounts
for the entropy imbalance since erasing information affects entropy by Launder’s principle.
This is a very interesting link between physics and the idea of information since this concept of entropy related
to information plays a very important role as discussed in the previous section regarding reversible circuits.

5

Chapter 2

Quantum Mechanics

In this chapter I will discuss some basic concepts of quantum mechanics which are required for understanding
quantum computing In this report I will be mostly using the bra-ket notation.

2.1 Postulates of Quantum Mechanics

The following are the postulates of Quantum mechanics.
Postulate 1: The state of a quantum mechanical system is completely specified by the wavefunction |ψ(r, t)〉.
Postulate 2: To every observable in classical mechanics, there corresponds a linear, Hermitian operator in
quantum mechanics. For example, in coordinate space, the momentum operator P̂x corresponding to momentum
px in the x direction for a single particle is −i~ ∂

∂x .

Postulate 3: In any measurement of the observable associated with operator Â, the only values that will
ever be observed are the eigenvalues a which satisfy ÂΨ = aΨ. Although measurements must always yield an
eigenvalue, the state does not originally have to be in an eigenstate of Â. An arbitrary state can be expanded
in the complete set of eigenvectors of Â (Âψi = aiψi) as Ψ =

∑
i ciψi, where the sum can run to infinity in

principle. The probability of observing eigenvalue ai is given by c∗i ci.

Postulate 4: The average value of the observable corresponding to operator Â is given by 〈Â〉 =
〈ψ| Â |ψ〉
〈ψ|ψ〉

Postulate 5: The wavefunction evolves in time according to the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉

H represents the Hamiltonian of the state and |ψ〉 represents the state of the system.
Postulate 6: The total wavefunction must be anti symmetric with respect to the interchange of all coordinates
of one fermion with those of another. Electronic spin must be included in this set of coordinates. The Pauli
exclusion principle is a direct result of this anti symmetry principle.

2.2 Qubits

2.2.1 What is a Qubit

A qubit is a form of information which essentially represents the wave function of a two level quantum
mechanical system. These two levels are represented as |0〉 and |1〉 and the state is written as a linear combination
of these two i.e. |ψ〉 = α |0〉+ β |1〉. Here α, β ∈ C with constraint |α|2 + |β|2 = 1 for normalization purposes.
Measurement of a qubit causes it to ”collapse” onto one of the states |0〉 or |1〉 and the probability for it to
be measured as |0〉 is |α|2 and for |1〉 it is |β|2. For representation we represent these kets as two dimensional
column vectors.

|0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
. So essentially |ψ〉 =

[
α
β

]
Qubits are meant to represent information but handling them is not as easy as handling classical bits due to
the fact that they lose their information once measured and also they cannot be cloned. However there are
many interesting things that can be done with qubits due to the nature of Quantum mechanics and most of
their advantages stem from quantum entanglement.
An interesting analogue of qubits are dreams. Say you just had a dream while you slept and on waking up

6

you remember the details of your dream but you wouldn’t be able to communicate the exact details of your
dream since it is present by itself in a somewhat vague state. So once you try to describe it to someone you
would essentially forget the original information and you dream collapses to the description you had given. Not
exactly a perfect analogue but an interesting one nonetheless.

2.2.2 Bloch Sphere

A method used for visualization of qubits is the Bloch sphere representation. Since all qubits are written as
α |0〉+β |1〉 with |α|2 + |β|2 = 1. Since α and β are complex numbers it is possible to represent each qubit with
three real numbers. An important point to understand here is that global phase change over a qubit doesn’t
affect it. Hence the qubits α |0〉+ β |1〉 and eιθ(α |0〉+ β |1〉) are the same since there is no way to differentiate
between them.
|ψ〉 = α |0〉+ β |1〉 with |α|2 + |β|2 = 1 can be written as

|ψ〉 = cos(θ/2) |0〉+ eιφ sin(θ/2) |1〉 (2.1)

Note that since global phase is ignored we can assume α to take on real values. If we take a sphere centered at
origin and assume |0〉 to represent |+z〉 and |1〉 to represent |−z〉 we get that the angle θ from eq 2.1 actually
is the polar angle of the vector which connects the origin to the point which actually represents this qubit and
the angle φ represents the azimuthal angle.

Using this we get |+x〉 =
|0〉+ |1〉

2
and |−x〉 =

|0〉 − |1〉
2

. Also |+y〉 =
|0〉+ ι |1〉

2
and |−y〉 =

|0〉 − ι |1〉
2

.

We often write |+x〉 as |+〉 and |−x〉 as |−〉. We can define certain operations over qubits which actually rotate
the qubit about a certain axis by a certain angle. These are called single qubit gates.

Figure 2.1: Bloch Sphere

Some important ones are the Pauli sigma matrices σx, σy, σz. Their eigenvalues are +1 and -1 and their
eigenvectors are the corresponding axes like for σx the eigenvectors are |+x〉 with eigenvalue 1 and |−x〉 with
eigenvalue -1 They essentially rotate by π about their respective axes. When represented in the |0〉, |1〉 basis

these are the Pauli sigma matrices: σx =

[
0 1
1 0

]
, σy =

[
0 −ι
ι 0

]
, σz =

[
1 0
0 −1

]
.

For performing rotation we define the rotation operatorsRx(θ) = e−ι
θ
2σx , Ry(θ) = e−ι

θ
2σy , Rz(θ) = e−ι

θ
2σz where

each of these respectively rotates by an angle of theta about the respective axes. Using this we can prove that
rotation about a unit vector n̂ by an angle θ can be written as Rn̂(θ) = e−ι

θ
2 n̂.σ. Here n̂.σ = nxσx+nxσy+nxσz.

When used in quantum circuits, σx, σy, σz are written as X,Y, Z respectively and are used as gates. Also a very

frequently used gate the Hadamard gate is written as H =
1√
2

[
1 1
1 −1

]
and essentially performs a rotation

about the vector (1√
2
, 0, 1√

2
) by an angle π. Note that I am ignoring any global phase changes since they are

irrelevant.

7

2.2.3 No-Cloning theorem

The no-cloning theorem states that it is impossible to create an identical copy of an arbitrary unknown
quantum state. Essentially one cannot simply clone a qubit. The proof of this is as follows:
Let there be two slots A and B in a quantum computer. A is the data slot which has an unknown state |ψ〉 and
B is the target slot where we wish to copy the given state so it is initially in a known state |s〉.
Let us define a unitary evolution U such that applying U to this given state makes a clone of the data slot to
the target slot. Current state is,

|ψ〉 ⊗ |s〉 (2.2)

On applying unitary transform U ,
U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉

Suppose this cloning procedure were to work for two particular pure states |ψ〉 and |φ〉, We have

U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉 (2.3)

U(|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉 (2.4)

On taking the inner product of these two equations we get

〈ψ|φ〉 = (〈ψ|φ〉)2 (2.5)

On solving this equation, we get that either |ψ〉 = |φ〉 or |ψ〉 and |φ〉 are orthogonal hence we cannot have a
unitary cloning operation which can clone non orthogonal states simultaneously.

2.3 Quantum measurement

Quite possibly one of the most perplexing aspects of quantum mechanics has to be measurement.

2.3.1 Projective Measurements

When measurement is done of a state over a certain basis the wavefunction collapses onto one of the or-
thonormal states which belong to that basis. We can define there to be certain measurement operator Mm

where the index m denotes which state it will collapse to. With this we get

p(m) = 〈ψ|Mm
†Mm |ψ〉

|ψ
′
〉 =

Mm |ψ〉√
〈ψ|Mm

†Mm |ψ〉

Here |ψ′〉 represents the state after measurement and pm is the probability for it to collapse onto that state.
Since these measurements only give us a final result over an orthonormal basis it is not possible to differentiate
between non orthogonal states.
Also these measurement operators must follow the completeness property that

∑
mMm

†Mm = I.

2.3.2 Heisenberg’s uncertainty principle

According to the Heisenberg’s uncertainty principle, one cannot measure two non commuting operators to
full accuracy. Its proof goes like this.
Let there be two Hermitian operators A and B and there is a state |ψ〉
Let 〈ψ|AB |ψ〉 = x+ ιy where x, y ∈ R. Since A and B are Hermitian we have 〈ψ|BA |ψ〉 = x− ιy. Therefore

| 〈ψ| [A,B] |ψ〉 |2 + | 〈ψ| {A,B} |ψ〉 |2 = 4| 〈ψ|AB |ψ〉 |2 (2.6)

By Cauchy-Shwarz inequality we have

| 〈ψ|AB |ψ〉 |2 ≤ 〈ψ|A2 |ψ〉 〈ψ|B2 |ψ〉 (2.7)

on combining 2.7 with eq 2.6 we get

| 〈ψ| [A,B] |ψ〉 |2 ≤ 4 〈ψ|A2 |ψ〉 〈ψ|B2 |ψ〉 (2.8)

Lets take two observable C and D, Let A = C − 〈C〉 and B = D − 〈D〉. On substituting this to eq 2.8 we get

∆(C)∆(D) ≥ | 〈ψ| [C,D] |ψ〉 |
2

(2.9)

8

And this is the Heisenberg uncertainty relation Here ∆(C) represents the standard deviation of the values of C.
In its exactness the Heisenberg uncertainty relation states that if we have prepared a large number of identical
states |ψ〉, and we were to measure the observables C and D over this system we would get multiple values for
them however their standard deviations will follow this inequality. Hence we mustn’t think of these as accuracy
limitations but as uncertainty in the value we wish to observe.

2.3.3 POVM Measurements

Projective measurements follow in a way that once the state is measured it remains the same hence doing
the same measurement will yield the exact same state with 100% probability. However there are forms of mea-
surement which cannot be repeated to give the same state. For example if we were to measure the position of
a photon using a silvered screen we end up destroying the photon.
POVM stands for positive operator valued measure. We define Em = Mm

†Mm where Mm are the measurement
operators. So we have

∑
mEm = I by the completeness property. We call Em as the POVM elements. We also

have p(m) = 〈ψ|Em |ψ〉 Projective measurements are essentially a case of POVM where we have Mm =
√
Em.

An interesting thing to note is that we can use POVM elements to try to differentiate between non orthogonal

states. Say we are given one of the two qubits |ψ1〉 = |0〉 and |ψ2〉 =
|0〉+ |1〉√

2
. Using just projective measure-

ments we would not be able to conclude with complete certainty which state we have been given however say
we define the following POVM elements

E1 =

√
2

1 +
√

2
|1〉 〈1|

E2 =

√
2

1 +
√

2
(|0〉 − |1〉)(〈0| − 〈1|)

E3 = I − E1 − E2

Clearly this follows completeness property. One can see that if we get E1 we can be sure that we received |ψ2〉
and if we get E2 we can be sure that we received |ψ1〉. However we cant make any conclusion if we obtain E3.
However we can safely conclude that our assumptions wont be wrong. This can be extended to any number of
qubits say m by using m+ 1 POVM elements by smartly choosing each Ei according to what makes each |ψi〉
different from the rest.

2.4 Density matrices

Density matrices are an important extension of a quantum state. An important property of a density matrix
is that it stores the complete information of the state. We represent it by ρ. Suppose we have an ensemble of
states {pi, |ψi〉} where pi is the probability of getting |ψi〉, then we represent density matrix as

ρ =
∑
i

pi |ψi〉 〈ψi|

When describing evolution of density matrix for some unitary evolution U over |ψ〉 we get the following (ρ
′

represents evolved density matrix)

ρ
′

=
∑
i

piU |ψi〉 〈ψi|U† = UρU†

An important concept in density matrices is the distinction between pure states and mixed states. For a pure
state we know its exact |ψ〉 hence the density matrix is simply ρ = |ψ〉 〈ψ|. Otherwise, ρ is in a mixed state, it
is said to be a mixture of the different pure states in the ensemble for ρ. An obvious fact is that tr(ρ) = 1 since
the wavefunction has to be normalised. For a pure state we get tr(ρ2) = 1 but for a mixed state tr(ρ2) < 1.
For the case where the state is prepared with some density matrix ρi with probability pi we can denote the
density matrix as

∑
i piρi. To prove this lets say that ρi arises from some ensemble {pij , |ψij〉} hence probability

for state |ψij〉 is pipij . So we get

ρ =
∑
ij

pipij |ψij〉 〈ψij | =
∑
i

piρi

An interesting property of the density operator is that different states can generate the same density operator.
Suppose we have two sets |ψ̃i〉 and |φ̃j〉. Let |ψ̃i〉 =

∑
j uij |φ̃j〉 for some unitary uij . Then we have∑

i

|ψ̃i〉 〈ψ̃i| =
∑
ijk

uiju
∗
ik |φ̃j〉 〈φ̃j | (2.10)

9

∑
i

|ψ̃i〉 〈ψ̃i| =
∑
jk

(∑
i

uki
†uij

)
|φ̃j〉 〈φ̃j | (2.11)

∑
i

|ψ̃i〉 〈ψ̃i| =
∑
jk

δkj |φ̃j〉 〈φ̃j | (2.12)

∑
i

|ψ̃i〉 〈ψ̃i| =
∑
j

|φ̃j〉 〈φ̃j | (2.13)

We can clearly see that these two construct the same density operator as per the relation assumed. For the
converse if we start with eq 2.13 we can retrace back to get the above assumed relation.
Another important thing is the representation of mixed states on the Bloch sphere. For pure states the state is
represented by a point on the Bloch sphere. Interestingly for mixed states, the state is represented by a point

inside the sphere. Let there be a state |ψ〉 then we know that ρ =
I + ~r.σ

2
. This can be proved very easily since

ρ is hermitian.
One can also see that for a mixed state |~r| < 1. This vector ~r is called the Bloch vector of ρ.

2.4.1 Partial Trace and Reduced density operator

Suppose we have a density operator ρAB which describes two systems A and B. The reduced density operator
for system A is defined as the following

ρA = trB(ρAB)

trB is just the trace over the system B. Partial trace is defined as this

trB(|a1〉 〈a2| ⊗ |b1〉 〈b2|) = |a1〉 〈a2| tr(|b1〉 〈b2|)

Since its a composite system we write ρAB as a tensor product. The reduced density operator is a very useful

tool. Lets assume we have the following state |ψ〉 =
|00〉+ |11〉√

2
. This happens to be one of the bell pairs. So

we have

ρ =
|00〉 〈00|+ |11〉 〈00|+ |00〉 〈11|+ |11〉 〈11|

2
(2.14)

For reduced density operator for the first qubit we have

ρ1 = tr2(ρ) (2.15)

ρ1 =
|0〉 〈0|+ |1〉 〈1|

2
=
I

2
(2.16)

So we can see that the Bloch vector for ρ1 is actually zero hence it must be a mixed state which is pretty weird
since we happen to know |ψ〉 completely. Interestingly we get the same result for all the bell pairs.
An interesting property of the partial trace is that it is a unique function for creating a map from operators
in AB to operators in A. Also reduced density operator explains why quantum teleportation makes sense but
more on that later.

2.4.2 Schmidt Decomposition

According to the Schmidt decomposition theorem, suppose |ψ〉 is a pure state of a composite system, AB.
Then there exist orthonormal states |iA〉 for system A, and orthonormal states |iB〉 of system B such that

|ψ〉 =
∑
i

λi |iA〉 |iB〉

Where λi are non-negative real numbers satisfying
∑
i λi

2 = 1 known as Schmidt coefficients. This is a very
strong result since we don’t need A and B to even be of the same dimension. Also as a result of this we get
ρA =

∑
i λi

2 |iA〉 〈iA| and ρB =
∑
i λi

2 |iB〉 〈iB | so essentially we get that ρA and ρB have the same eigen values.
The following is the proof for this theorem.
We know that for an operator OA in A and some suitable ρA

〈ψ|(OA ⊗ I)ψ〉 = tr(OAρ
A) (2.17)

This is a consequence of the decomposition so our aim is to prove this. There exists some orthonormal basis
say |iA〉 such that

ρA |iA〉 = pi |iA〉 (2.18)

10

Lets now define the state in this basis along with some arbitrary basis in B |φi〉

|ψ〉 =
∑
ij

cij |iA〉 |φi〉 =
∑
i

|iA〉

∑
j

cij |iB〉

 (2.19)

if we set
∑
j cij |φi〉 = ci |iB〉 for some unit vector |iB〉 and a positive ci. Now we have

|ψ〉 =
∑
i

ci |iA〉 |iB〉 (2.20)

We know that
tr(OAρ1) =

∑
i

〈iA|OAρ1iA〉 =
∑
i

pi 〈iA|OAiA〉 (2.21)

〈ψ|(OA ⊗ I)ψ〉 =
∑
j

ci
∗cj 〈iA|OAjA〉〈iB |jB〉 (2.22)

〈iB |jB〉 disappears for i 6= j so we actually get RHS in eq 2.22 equal to RHS in eq 2.21. So we get |ci|2 = pi and
if we take ci as positive then we get ci =

√
pi. Now if we repeat this process by starting with some operator OB

in B we get that their density matrices have the same eigen values hence proving our theorem. Interestingly
we didn’t need to assume that A and B are of the same dimension in all of this. So we get

〈ψ|(I ⊗OB)ψ〉 = tr(OBρ
B) (2.23)

When it comes down to it we can break down a two system state into the form stated in the theorem and that

actually gives rise to some very interesting symmetries. For example in the state |ψ〉 =
|00〉+ |01〉+ |11〉√

3
using

Schmidt decomposition we get that tr((ρA)2) and tr((ρB)2) both come out to be as 7/9. The symmetry here
is not very obvious but essentially involves breaking it down in a way that the density operators for the two
systems have the same eigen values. Also this cannot be extended to three systems since cross terms cannot be
avoided there.
Another important thing which can be done with this is purification. It essentially works this way. We are given
a density matrix ρA of a system A. We can now introduce another system R and define a pure system |AR〉 in
both these systems such that ρA = trR(|AR〉 〈AR|). This is known as purification and allows us to associate a
pure state to a mixed state. If we define |AR〉 like this

|AR〉 =
∑
i

√
pi |iA〉 |iR〉

Using this we get

trR(|AR〉 〈AR|) =
∑
ij

√
pipj |iA〉 〈jA| tr(|iR〉 〈jR|) (2.24)

trR(|AR〉 〈AR|) =
∑
ij

√
pipj |iA〉 〈jA| δij (2.25)

trR(|AR〉 〈AR|) =
∑
i

pi |iA〉 〈iA| = ρA (2.26)

One must note that using some UR |R〉 instead of |R〉 where UR is a unitary evolution in R also gives a purification

2.5 EPR and the Bell inequality

This would quite possibly be one of the most debated topics in Quantum mechanics. In their 1935 paper
Einstein, Polensky and Rosen offered an argument to prove that the current Quantum theory is incomplete.
Their idea was later refined by David Bohm and today is mainly presented in this form. Suppose we prepare a

two qubit state like this, |ψ〉 =
|01〉 − |10〉√

2
. If we measure the first qubit and we get |1〉 we reach the conclusion

that the second qubit would have to become |0〉 and vice-versa however this violates the idea of local realism
which had been assumed to be true.
Later in Bell’s 1971 paper Bell assumed a local deterministic world along with the hidden variables theory and
reached an inequality which could be checked experimentally. He concluded in this paper that it is not possible
for a hidden variable theory to support local determinism. I wont go over the exact math in that paper however
later his inequality gave rise to the CSHS inequality.

11

The experimental setup is something like this, two people Alice and Bob (better get used to these names as
they come up quite often) are given one of the qubits from the previously mentioned |ψ〉. They have a choice
to measure along different vectors in the way that Alice can either measure along ~q and ~r and get values Q or
R. Similarly Bob can measure along ~s and ~t and get values S or T . Note that all of Q,R, S, T take either +1
or -1 as a value.
According to Bell’s inequality we get

E(QS) + E(RS) + E(RT)− E(QT) ≤ 2

But here’s the issue, nature doesn’t follow this inequality. Various experiments have been performed and it
turns out that this inequality isn’t completely true and the actual bound comes out to be 2

√
2. This is mainly

because the math involved in deriving this was actually done without considering any quantum mechanics and
the commutation relations between observables. This was refined in the Tsirelon’s inequality which essentially
sets the higher bound as 2

√
2.

It goes like this, we take Q = ~q.~σ, R = ~r.~σ, S = ~s.~σ, T = ~t.~σ. We can prove the following equation

(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T)2 = 4I + [Q,R]⊗ [S, T] (2.27)

from here on taking average value on both sides and using the inequality from eq. 2.8 we get the following
equation

〈Q⊗ S〉+ 〈R⊗ S〉+ 〈R⊗ T 〉 − 〈Q⊗ T 〉 ≤ 2
√

2 (2.28)

This is the Tsirelon’s inequality.

12

Chapter 3

Quantum Circuits

In this chapter I will be discussing the various quantum gates and building quantum circuits

3.1 Quantum Gates

All quantum gates are essentially a unitary evolution which acts on a state. For single qubits an important
thing to observe about these are that they are all unitary operations and can be described as a global phase
multiplication along with rotations about the x, y, z axes.
Let there be some unitary evolution U acting on a single qubit state. We can prove that all unitary evolutions
can be defined in the following way

U = eiαRx(β)Ry(γ)Rz(δ) (3.1)

Here Rx, Ry, Rz are the rotation operators as defined in the section 2.2.2 in the previous chapter. The phase
term is irrelevant when multiplied to a single qubit but ahead we will see that it can be used over a multiple
qubit system to actually change it. The following are some important quantum gates which we will be seeing
quite often
On a side note the T gate which is called the π/8 gate actually causes a rotation of pi/4 and affects the global

Figure 3.1: Quantum Gates

phase by π/8 hence the name is actually quite deceiving hence we will be referring to it as the T gate only.

13

This formulation of eq 3.1 can also be extended like this

U = eiαRn̂(β)Rm̂(γ)Rn̂(δ) (3.2)

Here n̂ and m̂ are two non parallel unit vectors about which the rotations are occurring and α, β, γ, δ are chosen
appropriately for the unitary operation.
Another interesting way of writing the unitary operator is U = AXBXC where ABC = I. This can be easily
verified by putting A = Rz(β)Ry(γ/2), B = Ry(−γ/2)Rz(−(δ+β)/2) and C = Rz((δ−β)/2) and using eq, 3.2
with n̂ = ẑ and m̂ = ŷ. Clearly ABC = I and using the identity XRy(θ)X = Ry(−θ) and XRz(θ)X = Rz(−θ)
we get U = AXBXC.
Some other identities using single qubits are

HXH = Z,HY H = −Y,HZH = X

3.1.1 Controlled gates

Controlled gates which is controlled by n qubits (|x1, x2,xn〉) and causes a unitary evolution U over k
qubits (state |ψ〉) is described by the following gate Cn(U) in this equation

Cn(U) |x1, x2,xn〉 |ψ〉 = |x1, x2,xn〉Ux1x2...xn |ψ〉 (3.3)

Put simply it applies the operation U over |ψ〉 when all of x1, x2,xn are 1.
One can see that the controlled not (CNOT) described in the figure above is a controlled gate. Using this
gate entangles the two qubits it acts on. We can also describe a controlled unitary operator using one qubit for
control using the U = AXBXC method where ABC = I in the following manner. The Toffoli gate is a not

Figure 3.2: A C1(U) gate

controlled by two qubits. It can be constructed using CNOT,H, T, T † as shown in fig. 3.3

Figure 3.3: Toffoli gate construction

If we are to make a C2(U) gate we can construct it using CNOT and V gates where V 2 = U and V is uni-
tary. The ciruit would be something like this (refer fig. 3.4). If we wish to execute a Toffoli gate we can put

V =
(1− ι)(I + ιX)

2
For constructing a fredkin gate using toffoli gates is quite simple. It can even be constructed using one toffoli
and two CNOTs as shown here.

14

Figure 3.4: A C2(U) gate

Figure 3.5: Fredkin using toffoli Figure 3.6: Fredkin using CNOT and toffoli

However an interesting thing about the fredkin gate is that it can be constructed completely with only five two
qubit gates. In fig. 3.6 replacing the toffoli by a construction like that of fig. 3.4 we get fig. 3.7 where V 2 = X
and V is unitary.

The two CNOTs in the right end commute and so we can combine the last CNOT with the controlled V †

Figure 3.7: Fredkin with 5 two qubit gates

and similarly combine the first CNOT and the controlled V . This yields us five two qubit gates.
Say we want to construct a C5(U) gate we can do so in a simple method using ancillary or work qubits along
with some toffoli gates.

This can easily be extended to Cn(U) however the issue is that there is a lot of work qubits involved. Say
we want to execute Cn(Z). We can actually solve this quite easily using the method described in fig. 3.4 for
executing this. So we can see that if we use Cn−1(X) with it acting on the nth qubit controlled by the first

(n − 1) qubits, followed by controlled
√
Z
†

which acts on the target qubit controlled by nth qubit. This is
followed by another Cn−1(X) acting on the nth controlled by the first (n − 1) bits and after this we have a
controlled

√
Z gate which acts on the target qubit controlled by the nth qubit. This is followed by a Cn−1(

√
Z)

gate which acts on the target qubit and is controlled by the first n−1 qubits. We can now break this gate down
recursively following the previous procedure and using controlled

4
√
Z gates and go on till we only have gates

which can be controlled by a single qubit.

Note that even though we are using multiple control not gates they too can be broken down in a similar process
so we can construct the whole thing just using toffolis and CNOTs and two qubit gates. However the circuit
complexity has gone in O(n2) in comparison to the work qubit method.
Another thing about controlled gates is that when a certain control qubit has a white dot on it, it implies that
the NOT of that qubit is being used in control. Refer fig. 3.10.

15

Figure 3.8: C5(U) with work qubits

Figure 3.9: Iteratively executing a C5(Z)

3.1.2 Measurement in circuits and Quantum Teleportation

Measurement always has only two possibilities |0〉 and |1〉 however one can measure on a different basis
by simply multiplying the appropriate operator to the state before measurement. For example if we wish to
measure in the |+〉 and |−〉 basis then one has to apply the Hadamard gate before measurement.
An important equality in measurement is that if we have C1(U) and we apply measurement before the gate on
the controlling qubit it is the same as measuring the qubit after applying the gate.
An important application of quantum computing arises with using measurement and that is quantum telepor-
tation. In Quantum teleportation we essentially transport an unknown state from one qubit to another.

So we have the original state |ψ〉 and two other qubits initialized at |B00〉 which is the EPR pair
|00〉+ |11〉√

2
and they follow the given circuit (fig. 3.11)

To think of the teleportation in terms of the receiver and sender we can think of it this way. Alice and Bob
have an EPR pair with them with each having one of the qubits. Alice now makes the qubit with state
|ψ〉 = α |0〉+ β |1〉 interact with her qubit from the EPR pair and then measures both the qubits and based on
her results Bob applies the appropriate transformations over his qubit and will then obtain the state |ψ〉 on his
qubit.
Initially the state of the system is |ψ0〉 = |ψ〉 |β00〉. We can see that after the CNOT and H gates the state

of the system is |ψ1〉 =
1

2

[
α(|0〉 + |1〉)(|00〉 + |11〉) + β(|0〉 − |1〉)(|01〉 + |10〉)

]
this can be rearranged into the

following

|ψ1〉 =
1

2

[
|00〉 (α |0〉+ β |1〉) + |01〉 (α |0〉+ β |1〉) + |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)

]
Hence on measuring the first two qubits and applying appropriate transformation to the third qubit will make
it into the original state |ψ〉. Note that since Bob requires the result of Alice’s measurement to obtain the orig-
inal state and that is possible only via a classical channel of communication there is no violation of relativity
occurring.

16

Figure 3.10: Controlled gates with white dots

Figure 3.11: Measurement in Quantum circuits

Now if we were to calculate the density operator of the state |ψ1〉 we see that its equal to the following

ρ =
1

4

[
|00〉 〈00| (α |0〉+β |1〉)(α∗ 〈0|+β∗ 〈1|)+|01〉 〈01| (α |1〉+β |0〉)(α∗ 〈1|+β∗ 〈0|)+|10〉 〈10| (α |0〉−β |1〉)(α∗ 〈0|−

β∗ 〈1|) + |10〉 〈10| (α |1〉 − β |0〉)(α∗ 〈1| − β∗ 〈0|)
]

The reduced density operator for Bob’s state can be calculated using partial trace.

ρB =
2(|α|2 + |β|2) |0〉 〈0|+ 2(|α|2 + |β|2) |1〉 〈1|

4
=
I

2

Clearly this contains no information about |ψ〉 hence without the measurement and communication of the result
Bob has no information regarding |ψ〉 at all hence this doesn’t violate relativity at all.

3.2 Universality in Quantum Computing

We know that using NAND gates alone one can implement all boolean functions. Similarly we can also
implement any arbitrary unitary evolution using just CNOT, Hadamard, Phase and π/8 gates upto an arbitrary
level of accuracy. It is important to understand that one cannot represent every unitary evolution since they
exist over a continuous set of variables hence could require an infinite number of these gates to execute.

3.2.1 Two level unitary operators

One can perform all unitary evolutions using just CNOT gates and single qubit gates. To understand this
we must first see that we can represent every unitary evolution as a product of some number of two level unitary
matrices.
A two level unitary matrix is a which affects only two or fewer of the components of the vector it acts on. A d
dimensional unitary matrix can be written as a product of at most d(d− 1)/2 two level unitary matrices. The
steps in finding this unitary decomposition is to keep making the diagonal elements of U equal to 1 and make
the rest of the row and column zero and at each stage we will get a two level unitary evolution to multiply.
repeat till we don’t end up with a two level unitary matrix.
Now if we want to execute a two level unitary operation we can do so using single qubit gates and CNOT gates.
So first of all let the two level unitary operation be some U . This acts only on two binary sequences say |g1〉
and |gm〉 and these are connected by the gray code |g2〉 , |g3〉 , |gm−1〉.
A gray code is a sequence where each term differs from the last by just a single bit. Lets say the |gm−1〉 and
|gm〉 differ in their jth bit, then we have to construct a controlled operation such that it acts the unitary Ũ on
the jth qubit and is controlled by the rest of the cubits. Here Ũ is the sub matrix of U which makes it differ
from an identity matrix. However this must be applied after we interchange the |g1〉 state with |gm−1〉

17

Figure 3.12: Quantum Teleportation

Here is an example. Suppose we wish to execute the unitary U which is the following.

U =



a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


Clearly Ũ =

[
a c
b d

]
and the two states U affects is |000〉 and |111〉. The gray code sequence between them is

|000〉 −→ |001〉 −→ |011〉 −→ |111〉. Here the last two terms differ in their first qubit and we must exchange the
state |000〉 with |011〉. We can see that the following circuit in fig. 3.13 does this.

Figure 3.13: Executing the circuit for the operation U

Its trivial to see that this circuit can be broken into CNOTs and single qubit gates using methods described
previously. For a two level unitary evolution we can see that it takes complexity of O(n2) on breaking down
into CNOTs and single qubit gates. If we were to extend this to an arbitrary unitary evolution we can see that
it will become O(n222n) since an arbitrary unitary evolution can be represented as a product of O((2n)2) since
the operator is 2n dimensional and the number of two level matrices required is in n2 complexity.

3.2.2 Approximating Unitary operators

Now here’s the thing. Notice how we so freely used any arbitrary single qubit gate? Well we often just
cannot come up with any arbitrary unitary operation over a single qubit so easily.
We will now define a quantity E(U, V) where U and V are unitary operators of the same state space.

E(U, V) = max||(U − V) |ψ〉 || (3.4)

The max represents the maximum over all possible |ψ〉 in the state space. Suppose a quantum system starts in
the state |ψ〉, and we perform either the unitary operation U , or the unitary operation V . Following this, we
perform a measurement. Let M be a POVM element associated with the measurement, and let PU (or PV) be
the probability of obtaining the corresponding measurement outcome if the operation U (or V) was performed.
We then have

|PU − PV | = | 〈ψ|U†MU |ψ〉 − 〈ψ|V †MV |ψ〉 | (3.5)

If we substitute |∆〉 = (U − V) |ψ〉 we get the following from Cauchy-Schwarz inequality

|PU − PV | = | 〈ψ|U†M |∆〉+ 〈∆|MV |ψ〉 | (3.6)

18

|PU − PV | ≤ || |∆〉 ||+ || |∆〉 || (3.7)

|PU − PV | ≤ 2E(U, V) (3.8)

Hence if E(U, V) is small, the measurement results of U and V will also be very close. Note that if we use
sequenced gates, the error value will add up linearly and so wouldn’t actually cause big problems

E(U2U1 − V2V1) = ||(U2U1 − V2V1) |ψ〉 || (3.9)

E(U2U1 − V2V1) = ||(U2U1 − V2U1) |ψ〉+ (V2U1 − V2V1) |ψ〉 || (3.10)

E(U2U1 − V2V1) = ||(U2U1 − V2U1) |ψ〉+ (V2U1 − V2V1) |ψ〉 || (3.11)

Using triangle inequality we get

E(U2U1 − V2V1) ≤ ||(U2 − V2)U1 |ψ〉 ||+ ||U1 − V1)V2 |ψ〉 || (3.12)

E(U2U1 − V2V1) ≤ E(U2, V2) + E(U1, V1) (3.13)

This can be extended to any number of operations using induction.
Consider the operations T and HTH. T gives a rotation about Z axis by an angle of pi/4. HTH gives a
rotation about X axis by an angle of pi/4. Combining these both we get

exp(−ιπ
8
Z) exp(−ιπ

8
X) =

[
cos
(π

8

)
I − ι sin

(π
8

)
Z
][

cos
(π

8

)
I − ι sin

(π
8

)
X
]

(3.14)

exp(−ιπ
8
Z) exp(−ιπ

8
X) = cos2

(π
8

)
I − ι

[
cos
(π

8

)
(X + Z) + sin

(π
8

)
Y
]

sin
(π

8

)
(3.15)

As one can see this obtains us a rotation by an θ such that cos

(
θ

2

)
= cos2

(π
8

)
about the vector ~n =(

cos
π

8
, sin

π

8
, cos

π

8

)
. We can see that this θ is an irrational multiple of 2π. Hence suppose we wish to make

R~n(α) for some arbitrary α we can replicate to an arbitrary accuracy using repeated iteration R~n(θ)
Lets say we wish to have it to some accuracy δ and N is an integer larger than 2π/δ. Lets define a sequence
θk = (kθ)mod 2π. From pigeonhole principle we can see that there exists distinct j, k ∈ 1, 2,N such that
|θj − θk| ≤ 2π/N < δ hence we can use θl(j−k) to attain any value in [0, 2π) with accuracy of δ.

Now we can see that HR~n(θ)H = R~m(θ) where ~m =
(

cos
π

8
,− sin

π

8
, cos

π

8

)
. Now if we recall eq. 3.2, we can

see that all unitary operators can be represented as the following subject to a certain level of accuracy.

U = eiαR~n(θ)
n1HR~n(θ)

n2HR~n(θ)
n3 (3.16)

Now here is the important question. How efficient is this approach? Say we have m gate circuit we wish to
replicate to closeness of ε (we define this closeness as E(U, V) < ε). This will give us a Ω(m2(m/ε)) which is not
really good however with the θk approach we can see that the range of angles gets filled up fairly uniformly so
we can consider a complexity of some Θ(m2/ε). This gives us a fairly good approach however it can get even
better. According to the Solovay-Kitaev theorem one can achieve a complexity of O(mlog(m/ε)).

3.3 Simulation of Quantum systems

One of the biggest motivations for a Quantum computer was for simulating a Quantum system which would
prove to be extremely difficult for a classical computer. Classical computers can simulate quantum systems
however they are done so very inefficiently. The equation of concern here is the Schrödinger equation

ι~
∂

∂t
|ψ〉 = Ĥ|ψ〉

We will rewrite in the following form since we are dealing with real particles. Here 〈x|ψ〉 = ψ(x)

ι~
∂

∂t
ψ(x) =

[
− 1

2m

∂2

∂x2
+ V (x)

]
ψ(x)

The difficulty arises in the number of equations which need to be solved. A n qubit system requires 2n equations
to be solved hence making it exponentially difficult for classical computers. There do exist some approximation
techniques which make it a little more feasible on classical computers but there are still many quantum systems
which do not have any such approximations. Also a density matrix describing an n qubit system would require

19

4n − 1 independent real numbers.
Now for a time independent Hamiltonian we can write the following equation

|ψ(t)〉 = e−ιHt|ψ(0)〉

Since H is usually pretty difficult to remove the exponent of, we make approximations usually to the second
or third order of ∆t. However most real world systems have multiple interaction terms in their Hamiltonian
expressions hence are of form H =

∑L
k=1Hk. Unless [Hj , Hk] = 0 for all j, k we will have the following equation

e−ιHt 6= e−ιH1te−ιH2t.....e−ιHnt. Now this does make things harder for us since the commutation terms will
appear alongside these normal terms and they need not always be zero. There is a pretty smooth workaround
however. Notice that limn→∞(eιAt/neιBt/n)n = eι(A+B)t since the commutation terms drop out since they have
a n in their denominator hence we can simulate the system to a fair level of accuracy for a sufficiently large n.
The algorithms functions like this
Inputs: The initial state |ψ0〉 along with the Hamiltonian H =

∑L
k=1Hk, the error range δ and time tf for

which we have to find |ψ(tf)〉
Outputs: The state | ˜ψ(tf)〉 such that | 〈 ˜ψ(tf)| |2 < 1− δ
Procedure:

1. Initialize state as |ψ̃0〉 = |ψ0〉.

2. Iterative update |ψj+1〉 = U∆t |ψj〉.

3. j = j + 1; goto 2. while j∆t < tf .

4. | ˜ψ(tf)〉 = |ψ̃j〉 final result

Runtime: This typically functions in O(poly(1/δ)) operations. Here U∆t is a unitary which describes the
approximate evolution over a time of ∆t
An interesting kind of Hamiltonian are Hamiltonians of form H = H1 ⊗ H2 ⊗ H3 which is acting on a three
qubit system such that H1 acts on the first qubit and so on. Lets pick the example H = Z1 ⊗ Z2 ⊗ Z3. The
circuit for this would look something like this Here’s the interesting part, we can execute Hamiltonians which

Figure 3.14: Circuit for H = Z1 ⊗ Z2 ⊗ Z3

cause a rotation of π on the Bloch sphere using this circuit along with basis changing operators. For example
if we want X1 instead of Z1 we can simply put Hadamard on the first bit at the start and at the end and it
would work. We can extend it to rotations of arbitrary angles by using a different operator on the ancilla bit.
So this way we can execute Hamiltonians of form H =

∑L
k=1Hk + Z⊗n or something similar however these

usually aren’t found in nature.
Not all Hamiltonians can be executed efficiently however for example to process of a system achieving equilibrium
has no known efficient way of execution also the process by itself is not very well understood. The equilibrium
state’s density matrix is defined as the Gibb’s state and is writen as ρeq = e−βH/Z where the partition function
Z = tr(e−βH). Note that ρeq is not provably the actual density matrix of the equilibrium state but rather an
educated guess for it.

20

Chapter 4

Algorithms for Quantum Computing

In this chapter I will discuss the algorithms and functionality behind certain algorithms for Quantum Com-
puters.

4.1 The Quantum Fourier Transform

The normal Fourier transform essentially decomposes a signal into it’s constituent frequencies. The Quantum
Fourier transform in the same idea acts on a N = 2n dimensional vector (x0, x1, ...xN−1) in CN and maps it to
a vector (y0, y1, ...yN−1) in CN according the following formula

yk =
1√
N

N∑
j=0

xje
2πιjk/N

Now an important thing to note is that this happens to be a unitary transform which means that we can execute
it in a quantum circuit thanks to universality. Now we can represent each vector in this space with n qubits.
Let each state be represented as |j1, j2, ..., jn〉. Let 0.j1j2..jn represent the binary representation of the sum of
fractions j1/2 ++ jn/2

n. We can see that the Fourier transform over this state can be written as

UQFT |j1, j2, ..., jn〉 =
(|0〉+ e2πι0.jn |1〉)(|0〉+ e2πι0.jn−1jn |1〉).....(|0〉+ e2πι0.j1j2...jn |1〉)

2n/2
(4.1)

Now if we define a rotation matrix Rk =

[
1 0

0 e2πι/2k

]
we can create an efficient circuit for executing the

Quantum Fourier transform like this (see fig 4.1). Using this we can do lots of things which classical computers

Figure 4.1: Circuit for QFT. Note that this does not include the swap gates for reversing order of output qubits
and normalization

would have taken exponential time for since classical computers would require Θ(22n) complexity in number
of operations and quantum computers only require a Θ(n2) as seen from fig 4.1 and that is an exponential
improvement. Here are some interesting things which can be done using the Fourier transform.

4.1.1 Phase estimation

Suppose we have unitary operator U with an eigen vector |u〉 with an eigenvalue e2πφ where φ is unknown
and we wish to estimate its value. We us two registers, one which has t qubits and the other which is initialized
in state |u〉. Now lets say that the binary representation of φ is 0.φ1φ2...φt accurate to t places after the radix
point.
We will now execute the following circuit described in fig. 4.2. The state of the first register will now be

21

Figure 4.2: Circuit for phase estimation. Note that we perform inverse Fourier transform on the first register
and then a measurement on the first register

(|0〉+ e2πι0.φt |1〉)(|0〉+ e2πι0.φn−1φn |1〉).....(|0〉+ e2πι0.φ1φ2...φn |1〉)
2n/2

Clearly doing an inverse Fourier transform over this will give us the state |φ1φ2...φt〉 hence on measurement we
will be able to estimate this phase. This will soon prove to be very useful.

4.1.2 Order finding and factoring

Using the phase estimation algorithm we can also use it for order finding and factoring and also order finding
and factoring happen to be equivalent problems. For two integers x and N which are co prime we define the
order of x modulo N as the least positive integer r such that xr = 1(mod N). The order finding problem
essentially aims to find this r and it is considered to be a hard problem for classical computers since there is no
known efficient algorithm for it. Note that r would never exceed N which is trivial to prove.
We will now define a unitary which acts like this (note x is coprime to N)

U |y〉 = |xy(modN)〉

We can see that the eigen states of U would be written like this

|us〉 =
1√
r

r−1∑
k=0

exp

[
−2πιsk

r

]
|xkmod N〉

We can see that the eigen values are exp

[
2πιs

r

]
for s being an integer from 0 to r − 1. We will be executing

controlled U2j so we would need to know an efficient way to execute that but apart from that we would need
the states |us〉 but we would need to know r for that but we obviously don’t know that however there is a useful
property of these states

1√
r

r−1∑
s=0

|us〉 = |1〉

And using this we can see that the following holds for a t qubit register in the state |z〉

|z〉Uz12t−1

Uz22t−2

.....Uzt2
0

|1〉 = |z〉 |xzmod N〉

On a side note we can also construct a unitary which does addition over modulo N and initialize our state
to zero and get a similar construct. Now to actually obtain the order from this requires use of the continued
fractions algorithm. We will only obtain the phase estimate after performing inverse Fourier transform which
would be φ ≈ s/r. The aim is to find a s

′
and r

′
such that s

′
/r
′

= s/r and we can verify whether r
′

is the order
by simply calculating xr ′mod N . If s and r are co-prime then we will get r

′
= r so that is not an issue and also

for most possible pairs of s and r however in the case that they aren’t co-prime, the best approach is to run the
algorithm twice so we will have two fractions s

′

1/r
′

1 and s
′

2/r
′

2, if we have s
′

1 6= s
′

2 we can get r by taking the
LCM of r

′

1, r
′

2 and the probability of this being successful is fairly high and can be proved to be greater than
1/4.

22

Figure 4.3: Circuit for order finding

The order finding algorithm proceeds in the following manner:
Input: Black box for executing Ux,N which performs the following operation Ux,N |j〉 |k〉 = |j〉 |xjkmod N〉 for
x co-prime to L bit integer N . Also t qubits initialized to |0〉 where t = 2L+ 1 + dlog(2 + 1

2ε)e and an L qubit
register set to the state |1〉.
Output: The smallest positive integer r such that xrmod N = 1.
Procedure:

1. Initialize state to |0〉 |1〉

2. Create the superposition state
1√
2t

∑2t−1
j=0 |j〉 |1〉 using Hadamard.

3. Apply the black box and the state becomes
1√
2t

∑2t−1
j=0 |j〉 |xjmod N〉 ≈ 1√

r2t

∑r−1
s=0

∑2t−1
j=0 e2πιsj/r |j〉 |us〉

4. Applying inverse Fourier transform we get the state
1√
r

∑r−1
s=0 |s̃/r〉 |us〉

5. Measure the first register to obtain s̃/r

6. Apply continued fractions algorithm to obtain r

Now to prove that the problem of factoring actually reduces to order finding, we use two lemmas. If we have
x2 = 1(mod N) but x 6= ±1(mod N) then at least one of gcd(x− 1, N) and gcd(x+ 1, N) is a non trivial factor
of N and this can be computed in O(L3) operations.
The second lemma is that suppose we have the prime factorization of an odd composite number N = pα1

1pαmm .
Let x be randomly chosen with requirement 1 ≤ x ≤ N − 1 and x is co prime to N . Let r be the order of x

modulo N then the probability of r being even and xr/2 6= −1(mod N) ≥ 1− 1

2m
Using these two theorems we can obtain an algorithm which returns a non trivial factor of N with high
probability and this happens to be Shor’s Factoring algorithm. The steps of this algorithm are as follows (note
this doesn’t outline what exactly is happening in the circuit for this):
Inputs: A composite number N
Output: A non trivial factor of N
Procedure:

1. If N is even just return 2 else continue.

2. Determine using a classical algorithm whether N = ab for integers a ≥ 1 and b ≥ 2. The classical algorithm
finds the value of y =logN and then x = y/b for b ≤ L and then finds the closest integers to 2x u1 and
u2. If either of ub1 or ub2 are equal to N then the N has such a representation for integer a, b according to
the previous conditions and return a else continue.

3. Randomly chose x from 1 to N − 1 and if gcd(x,N) > 1 then return gcd(x,N) else continue.

4. Do the order finding subroutine to find order r of x modulo N .

5. If r is even and xr/2 = −1(mod N) then compute gcd(xr/2 − 1, N) and gcd(xr/2 + 1, N), and test to see
if one of these is a non-trivial factor, returning that factor if so. Otherwise, the algorithm fails.

This runs in O(L3) complexity and has a success probability of O(1). If we try factoring 91 by this algorithm,
we can see that the first two steps would be skipped and then if we choose x = 4 then we can see that r = 6
and 4r/2 = 64mod 91 6= −1mod 91 and gcd(64 − 1, 91) happens to give 7 so the algorithm succeeds. Though
this may not seem very efficient if extrapolated to very large numbers it performs much better than classical
algorithms since order finding has no known efficient algorithm for classical computers. This is the famous
factoring algorithm which is soon to break RSA encryption according to most websites but that is mostly to
be many years later considering the largest number that has been factorized on an actual quantum computer
using this algorithm is 21.

23

4.1.3 Period finding

Another way of using the quantum Fourier transform is for finding the period of a periodic function which
means given a function f(x + r) = f(x) for 0 < r < 2L we have to find the value of r. The function will be
given as a black box which executes this unitary U |x〉 |y〉 = |x〉 |y ⊕ f(x)〉. Using the following algorithm we
can find the period of by just using U once. Inputs: The black box which performs U along with a state to
store the function evaluation initialized to |0〉 and a t = O(L+ log(1/ε)) qubit register initialized to |0〉.
Output: The least integer r > 0 such that f(x+ r) = f(x).
Procedure:

1. Initialize the state to |0〉 |0〉.

2. Create the superposition state
1√
2t

∑2t−1
x=0 |x〉 |0〉.

3. Apply the unitary to get this state
1√
2t

∑2t−1
x=0 |x〉 |f(x)〉 ≈ 1√

r2t

∑r−1
l=0

∑2t−1
x=0 e2πιlx/r |j〉 |f̂(l)〉.

4. Apply inverse Fourier transform to get
1√
r

∑r−1
l=0 |l̃/r〉 |f̂(l)〉

5. Measure the register to get l̃/r.

6. Apply the continued fractions algorithm to get the value of r.

As one can see this bears a lot of similarities to the normal order finding algorithm and interestingly the order
finding algorithm is actually just an example of the period finding algorithm since it finds the period of the

function f(x) = ax mod N . Matter of fact |f̂(l)〉 =
1√
r

∑r−1
l=0 e

−2πιlx/r which is the Fourier transform of f(x)

and we can actually see that it also happens to be the eigen state of U with an eigen value of l/r so we are just
doing a phase estimation of that.

Now if we define another state |f̃(l)〉 =
1√
N

∑N−1
x=0 e−2πιlx/N |f(x)〉 and for the function f(x + r) = f(x) we

define a unitary Uy |f(x)〉 = |f(x+ y)〉. We can see that |f̃(l)〉 happens to be eigen states of Uy due to the
shift invariance property of the Fourier transform and the eigen value would be e2πιly/N . Now if we are given a
|f(x0)〉 along with the black box for executing Uy we can use it for period finding with some modifications.

4.1.4 Discrete logarithms

The discrete logarithm problem is that if given a and b = as, we have to determine s. So first lets start with
a periodic function slightly more complex than the one in the previous subsection. Say we have the function
f(x1, x2) = asx1+x2 mod N and let say r is the smallest positive integer ar mod N = 1. This function’s period
is a tuple (l,−ls). Say we have a unitary U |x1〉 |x2〉 |y〉 = |x1〉 |x2〉 |y ⊕ f(x1, x2)〉 we can actually find its period
in a similar manner to the period finding algorithm described in the previous subsection.
So we just start with the state |0〉 |0〉 |0〉 over three registers where the first two have t = O(dlog re+ log(1/ε))
qubits and the third one stores the function and then create the superposition states for the first two register.
We then apply the unitary on the state and that can be decomposed in a similar way as shown in step 3 of the
period finding algorithms procedure to

1

2t

2t−1∑
x1=0

2t−1∑
x2=0

|x1〉 |x2〉 |f(x1, x2)〉

≈ 1

2t
√
r

r−1∑
l2=0

2t−1∑
x1=0

2t−1∑
x2=0

e2πι(sl2x1+l2x2) |x1〉 |x2〉 |f̂(sl2, l1)〉

=
1

2t
√
r

r−1∑
l2=0

2t−1∑
x1=0

e2πι(sl2x1)

2t−1∑
x2=0

e2πι(l2x2)

 |x1〉 |x2〉 |f̂(sl2, l1)〉 (4.2)

We can see that applying the inverse Fourier transform and measuring the first two registers will give us sl2/r
and l2/r from which we can deduce s by using continued fractions algorithm.

Note that |f̂(l1, l2)〉 =
1√
r

∑r−1
j=0 e

−2πιl2j/r |f(0, j)〉 which is the Fourier transform of f(x1, x2). Note that l1, l2

must satisfy
∑r−1
k=0 e

2πιk(l1/s−l2)/r = r else the amplitude of f(l1, l2) would go to zero.

24

Obtaining the value of s from sl2/r and l2/r can be done in the following manner. First if we consider the case
where s and r/ gcd(l2, r) are co prime we can simply see that the two fractions we will get by continued fractions
algorithm say s

′
l
′

2/r
′

1 and l
′

2/r
′

2 we can see that s can be obtained since the numerator of first fraction will just
be an integer multiple of the second and also their denominators will be the same. The problem arises when s
is not co prime with r/ gcd(l2, r) in which situation we will see that r

′

1 will be a factor of r
′

2 so we can run the
algorithm twice since probability that both the times the probability of obtaining the same values becomes very
small so we can then take the lcm of the denominators of the different fractions and we have a good probability
of obtaining r from that is high since it would just require their numerators to be co prime and then from there
we can obtain s by multiplying know fractions by the value of r and then seeing what integer multiple one is of
the other.

4.1.5 Hidden subgroup problem

The hidden subgroup problem describes a set of problems of this type: let f be a function from a finitely
generated group G to a finite set X such that f is constant on the cosets of a subgroup K, and distinct on
each coset. Given a quantum black box for performing the unitary transform U |g〉 |h〉 = |g〉 |h⊕ (g)〉 , for
g ∈ G, h ∈ X, and ⊕ is an appropriately chosen binary operation on X, find a generating set for K.
Order finding, period finding, discrete logarithms are all instances of the hidden subgroup problem. For the
period finding algorithm G is the set of positive integers, and K = {r, 2r, 3r, ...} for r ∈ G with the function
f(x+ r) = f(x) and X is any finite set. Also one can notice the similarities between all these algorithms so far
and they can be generalized for some finite abelian group G (in fact they can also be done for finitely generated
abelian groups).
The first step is applying a Fourier transform (a generalization of the Hadamard operation) to create a super-

position state and over this we apply the black box for f(x) to get the state
1√
|G|

∑
g∈G |g〉 |f(g)〉. We now

express f(g) in it’s Fourier basis of |f̂(l)〉 so the state can be rewritten as

1

|G|
∑
g∈G

|G|−1∑
l=0

e2πιlg/|G| |g〉 |f̂(l)〉

Now this looks very familiar doesn’t it? For the |f̂(l)〉 it will have zero amplitude if l doesn’t satisfy
∑
h∈K e

2πιlh/|G| =
|K| so now if we can find the l values we can find a generating set for the hidden subgroup K however this is
not exactly an easy task since when doing our regular period finding or such tasks we arrange the fraction l/|G|
to be such that l and |G| do not have common factors but for some arbitrary G this may not at all be necessary.
There is a way however, since abelian groups are isomorphic to a product of cyclic groups of prime power order,
that is G = Zp1 × Zp2× Zpm where Zpi is a group over integers {0, 1, ...pi − 1} with addition modulo over pi
so we can rewrite our phase as

e2πιlg/|G| =

M∏
i=1

e2πιli
′
gi/pi

And we can easily find l
′

i from phase estimation and then solve the hidden subgroup problem. However finding
the prime power order groups is a hard problem that is at least as hard as factoring but since we are working
with a quantum computer, it can also be used for finding these prime power order groups in efficient time. It
is possible to do so since each abelian group has a unique representation of this form and for an abelian group
which is the set of integers this really would just boil down to factoring.

4.1.6 Deutsch-Josza Algorithm and Simon’s Algorithm

The Deutsch-Josza Algorithm is a fairly famous example of a hidden subgroup problem solving algorithm.
The problem it solves goes like this, we are given a function f(x) which takes in a n bit string and outputs
either 0 or 1. Now we are given the following as a fact that this function is either a constant function or is a
balanced function i.e. it gives the outputs of 0 and 1 an equal number of times. Our goal is to find out whether
it is balanced or constant.
On a classical computer this would take 2n−1 + 1 iterations to conclude however a quantum computer can do
much better, it would take only one call of the oracle. Let the oracle be U |x〉 |y〉 = |x〉 |y ⊗ f(x)〉. We will have
two registers one of n qubits and the other of only one qubit. The first register is initialized at |0〉 and the other

is at |1〉. We now apply Hadamard to to both registers so we get this state
1√

2n+1

∑2n−1
x=0 |x〉 (|0〉−|1〉). We now

apply the oracle on this state to get
1√

2n+1

∑2n−1
x=0 |x〉 (|f(x)〉−|1⊕ f(x)〉) =

1√
2n+1

∑2n−1
x=0 (−1)f(x) |x〉 (|0〉−|1〉)

25

We can now just ignore the second register and apply Hadamard on the first register again and we will get

1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)f(x)(−1)x·y

]
|y〉

We now perform a measurement on this register but now here’s the thing, the probability of measuring the
state |0〉 is 1 if f(x) is constant but 0 if f(x) is balanced so depending on whether we get the state |0〉 on
measurement or not, we will find out the function.

Simon’s algorithm is another such algorithm which solves the problem where we are given a blackbox for a
function which is either a one-one function or is a two-one function which does mapping according to some
hidden bit string s such that if f(x1) = f(x2) then x1 ⊕ x2 = s. Let the domain of this function be over bit
strings of n bits then we would have to do 2n−1 + 1 oracle calls on a classical computer but with a quantum
computer we can do far better.
Now we have our usual unitary U |x〉 |y〉 = |x〉 |f(x)⊕ y〉 where |x〉 and |y〉 are of n qubit registers. The first step
is to initialize the whole state to |0〉 |0〉 and then apply Hadamard on the first register and then apply the black

box for the unitary to get
1√
2n

∑2n−1
x=0 |x〉 |f(x)〉. Now we measure the second register and in the case we have the

two one function then we have the state
1√
2

(|x〉+ |y〉) when we measure to get |f(x)〉 for the second register and

y = x⊕s. Now we will apply Hadamard again on the first register to get
1√

2n+1

∑
z∈{0,1}n [(−1)x·z + (−1)y·z] |z〉.

On measuring this state, the possible values of z satisfy x · z = y · z mod 2 which reduces to s · z = 0 and if
we have n distinct values for z obtained we can find out s by Gauss elimination so this can be run at about n
oracle calls which is a potential exponential speed up.

4.2 Search algorithms

Now in a classical computer the complexity of searching a list is O(N) quite obviously but there is an
algorithm which can do it on a Quantum computer in O(

√
N). Now this may not look as impressive as the

exponential speedups which we obtained for Fourier transform and all but it is still quite useful and important.

4.2.1 Grover’s Search Algorithm

Now say we have an indexed list of N = 2n elements and we have a function f(x) over this list where
f(x) = 0 if the element is not the solution and f(x) = 1 if it is solution. We are having some ≤ M ≤ N
solutions. We have an oracle which executes the following O |x〉 |y〉 = |x〉 |y ⊕ f(x)〉. So if we have the state

|x〉 |−〉 where |−〉 =
1√
2

(|0〉 − |1〉) then applying O gives us (−1)f(x) |x〉 |−〉 so we can just ignore the second

qubit and see that it makes |x〉 go to (−1)f(x) |x〉.
An important point to address here is the construction of the oracle itself. If we can construct the oracle then
that means we know the solutions, so then what are we searching for? Now knowing the solution and searching
for it are two very different things as the goal here is to find the known solutions from the indexed list of
elements. The key point is, an oracle which recognizes the solutions to a problem can be constructed without
actual knowledge of the solutions and this will be our main principle in utilising this search algorithm.
For describing our circuit we will first define a Grover operator G which does the following (shown in fig 4.4)
The phase happens to have the unitary 2 |0〉 〈0|−1 and on applying the Hadamard on both sides H⊗N (2 |0〉 〈0|−

Figure 4.4: Grover iteration

26

1)H⊗N = 2 |ψ〉 〈ψ| − 1 where |ψ〉 is the superposition state. From this we can see

G = (2 |ψ〉 〈ψ| − 1)O

An interesting thing to note is that the unitary 2 |ψ〉 〈ψ| − 1 will produce an inversion about mean in the sense
that only the component of the state that is parallel to the superposition has it’s sign unchanged. This brings
us to the geometric visualization of the Grover’s algorithm.

So we will now define |α〉 =
1√

N −M
∑
x|f(x)=0 |x〉 and |β〉 =

1√
M

∑
x|f(x)=1 |x〉. So we write

|ψ〉 =

√
N −M
N

|α〉+

√
M

N
|β〉 (4.3)

Now let |ψ〉 = cos

(
θ

2

)
|α〉+ sin

(
θ

2

)
|β〉, we can observe the following to hold

Gk |ψ〉 = cos

(
2k + 1

2
θ

)
|α〉+ sin

(
2k + 1

2
θ

)
|β〉 (4.4)

This shows that G just happens to be a rotation in |α〉 , |β〉 space. The core idea of the search algorithm is to
rotate |ψ〉 till it approaches |β〉 so essentially it would make the state into being composed of the solutions. The
fig 4.5 describes the rotation idea. Now the very important question is that how many times must we apply the

Figure 4.5: Grover rotation

operation to obtain a close estimate of |β〉. We can see that doing these many iterations will give us the needed
state.

R = Round

(
arccos

√
M/N

θ

)
Here Round is a function which rounds up to the nearest integer and rounds halves down. An important thing
to see here is that the error will be very small if we have M << N . Now at the moment if we assume that
M ≤ N/2 then since θ/2 ≥ sin(θ/2) we obtain the upper bound

R ≤

⌈
π

4

√
N

M

⌉
(4.5)

Now this makes things a lot more convenient as we just need the number of solutions and not the actual values
of them and this is where we obtain the term for complexity of circuit as O(

√
N/M).

The algorithm procedes like this, we start with the state |0〉⊗n |0〉. We now apply Hadamard on the first register

of n qubits and HX on the second register of 1 qubit. We now have the state
1√

2n+1

∑2n−1
x=0 |x〉 (|0〉 − |1〉).

Now we apply the Grover iteration for R ≈

⌈
π

4

√
N

M

⌉
and we will obtain an approximate state to |β〉 in the

27

first register and we would have to approximately measure M times to know all the solutions. Now if we have
M ≥ N/2 then we simply add another qubit which would essentially double our N so it just goes back to
M ≤ N/2 case. Funnily according to formula of R we mentioned previously, when M increases from N/2 to
N it would increase the number of iterations. However introducing another qubit would require us to change
the oracle. The new oracle can actually be shown to be this circuit in fig. 4.6 however it requires two ancillary
qubits. Given that this algorithm speeds up the search process it has a ton of applications given the fact that

Figure 4.6: New oracle with the extra qubit

a lot of algorithms utilise a search. While the speedup is only polynomial and not exponential it is still very
useful especially for speeding up an NP-complete problem. One such problem is the Hamiltonian cycle problem.
This is a problem which examines a graph and tells whether it has a Hamiltonian cycle or not where a Hamilto-
nian cycle is a cycle through the graph where every vertex is visited once. It is widely believed to be NP-complete
but it has not been proven yet. The classical algorithm goes like this:
(1) Find every possible ordering of the vertices (v1,vn) of the graph while allowing repetitions as they ease
the analysis.
(2) If a certain permutation works then there is a Hamiltonian cycle else continue searching.
Since there are nn = 2(n log n) orderings possible we just need a search among these elements. Let m = dlog ne
then we have to do a search using nm qubits and have some oracle which does O |v1,vn〉 = |v1,vn〉 if it isn’t
a Hamiltonian cycle and O |v1,vn〉 = − |v1,vn〉 if it is and as we know this method will require complexity
of O(2mn/2) which is a speedup over the classical approach.

4.2.2 Hamiltonian for search algorithm

Now this algorithm looks real good and all but how did we reach here? For explaining the approach we
will start with some state |ψ〉 and find a Hamiltonian which will evolve this state to |x〉 where this state is the
solution (for now lets just assume one solution) in some time ∆t. Once we find this Hamiltonian we simply
construct a circuit for simulating it.
Now if we begin making guesses for the Hamiltonians we can see that the terms would be constructed with |ψ〉
and |x〉. Now we write two Hamiltonians

H = |x〉 〈x|+ |ψ〉 〈ψ| (4.6)

H = |x〉 〈ψ|+ |ψ〉 〈x| (4.7)

Now the interesting thing is that both of these can be used to describe the search Hamiltonian but for now we
will focus on the one in eq. 4.6. Now we just have to run this simulation till time t for which exp(−ιHt) |ψ〉 = |x〉.
Now if we take |x〉 and |y〉 to be the orthonormal basis of this space then we can write |ψ〉 = α |x〉+β |y〉 where
α2 + β2 = 1. When we write H in this basis we get H = I + α(βX + αZ). We can see that

exp(−ιHt) |ψ〉 = exp(ιt)[cos(αt) |ψ〉 − ιsin(αt) |x〉]

Now we can simply ignore the phase factor and note that for t = π/2α we will get the result |x〉 on measurement
with unity probability. Now this unfortunately depends on the quantity α which is dependent on |ψ〉 and |x〉
but if we choose |ψ〉 to be the uniform superposition state then we know that α will be the same for all choices
of |x〉 and Voila! This is pretty much how the search algorithm works!
Alright so that’s all good but what about the circuit? Well we just need to follow the method described in
section 3.3 and we can see the following circuits can be used The complexity of the circuit will depend on the
accuracy we are aiming which will decide how small the time steps we will choose. We can see that if we wish

28

Figure 4.7: Circuit for executing exp(−ι |x〉 〈x|∆t) Figure 4.8: Circuit for executing exp(−ι |ψ〉 〈ψ|∆t)

to have an accuracy of O(∆tr) the cumulative error will come out to be O(∆tr
√
N) and since we want the error

to be O(1) we choose ∆t = Θ(N−1/2(r−1)) so then we have the number of steps to be t/∆t and the complexity
of the whole circuit will be O(

√
N ×N1/2(r−1)) which gives us O(Nr/2(r−1)) and we can see that the limit goes

to O(
√
N) for r tending to infinity.

A thing to note is that here in the analysis of ∆t we have used very general methods and we can use a specific
choice to actually do much better. Let us define a U(∆t) = exp(−ι |ψ〉 〈ψ|∆t) exp(−ι |x〉 〈x|∆t) on doing a
simple calculation we get the following for U(∆t) (note |x〉 = ẑ in this basis)

U(∆t) =

(
cos2

(
∆t

2

)
− sin2

(
∆t

2

)
~ψ · ẑ

)
I − 2ι sin

(
∆t

2

)(
cos

(
∆t

2

) ~ψ + ẑ

2
+ sin

(
∆t

2

) ~ψ × ẑ
2

)
(4.8)

Here ~ψ = (2αβ, 0, (α2−β2)) which is just the Bloch sphere representation. Now we can see that U(∆t) describes
a rotation about some axis in the Bloch sphere. On more observation we can see that it rotates about the axis

~r = cos

(
∆t

2

) ~ψ + ẑ

2
+ sin

(
∆t

2

) ~ψ × ẑ
2

by an angle θ such that cos

(
θ

2

)
= cos2

(
∆t

2

)
− sin2

(
∆t

2

)
~ψ · ẑ

We can also see that ~ψ · ~r = ẑ · ~r so a rotation about the axis ~r will make ~ψ go to ẑ and the angle for rotation

is θ for which cos

(
θ

2

)
= 1− 2

N
sin2

(
∆t

2

)
.

Now initially we took ∆t to be small but if we put it as π we maximize the rotation angle and that way we get
θ ≈ 4/

√
N and the number of oracle calls would be O(

√
N) and in fact if we put ∆t = π we actually get the

Grover iteration with exp(−ι |ψ〉 〈ψ|∆t) = I − 2 |ψ〉 〈ψ| and exp(−ι |x〉 〈x|∆t) = I − 2 |x〉 〈x|.
In the case of multiple solutions we can use the very same approach by just changing |x〉 to the superposition
of the solutions and we would approach the same Grover iteration idea.

4.2.3 Quantum Counting

An important thing to note about Grover’s algorithm is that it requires us to know the number of solutions
but what about the case where we do not know this? Here we use phase estimation for this. So we want to
estimate the eigen values of the Grover iteration for this.
Firstly let’s take the appended oracle approach so we can be sure about M ≤ N/2. From Eq. 4.4 we can see
that since G is just a rotation operator, its eigen values are eιθ and eι(2π−θ) and sin2(θ/2) = M/2N . Here
t = m+ dlog(2 + 1/2ε)e where we want to estimate θ to an accuracy of m bits so |∆θ| ≤ 2−m and a probability
of 1− ε. Now we will get some error for M which will be |∆M |

|∆M |
2N

=

∣∣∣∣sin2

(
θ + ∆θ

2

)
− sin2

(
θ

2

)∣∣∣∣ (4.9)

|∆M |
2N

<

(
2 sin

(
θ

2

)
+

∆θ

2

)
|∆θ|

2
(4.10)

Substituting sin2(θ/2) = M/2N and |∆θ| ≤ 2−m we have

|∆M |
2N

<

(√
2MN +

N

2m+1

)
2−m (4.11)

We can in Θ(
√
N) oracle calls get our accuracy to be O(

√
M) and this is a clear improvement over the classical

approach which would require O(N) oracle calls. Also when we run this along with using the Grover’s algorithm
if we take m = dn/2e+ 1 we get an angular error for R as π/4(1 + |∆θ|/θ) = π/4× 3/2 = 3π/8 and combining
with success probability of the phase estimation for ε = 1/6 we get a success probability of 5/6×cos2 3π/8 ≈ 0.12
which can be improved by a few repetitions of the combined search procedure.

29

Figure 4.9: Phase estimation for quantum counting

4.2.4 Searching an unstructured database

So far we have conducted searches on structured databases but now we will demonstrate that we can get a
speedup even on an unstructured database. We define our problem as follows, we have a database of N = 2n

elements labeled as d1, d2, ...dN each of which are l bit strings and we wish to find a specific string s.
When we are running this on a classical computer we consider it to have two components, a CPU where data
manipulation is done and it has a small temporary memory and then there is a large memory which stores the
database. The CPU can access data from the memory and store it and manipulate it. The method used here is
that the elements are given an n bit index for each of them where n = dlogNe and we start with 0 and in each
iteration we take one element from the large memory to the CPU and check if it is the required string. If it is
then we stop else we continue to the next index and repeat. This is very clearly the most efficient algorithm for
a classical computer.
For a Quantum computer we can use a similar architecture of a CPU and a memory. This CPU has 4 registers,
(1) an n qubit register initialized to |0〉, (2) an l qubit register initialized to |s〉 which remains in that for the
rest of the computation, (3) Another l qubit register initialized to |0〉 and (4) a 1 qubit register initialized to
|−〉.
The load operation will take the state |x〉 |s〉 |d〉 |−〉 to |x〉 |s〉 |d⊕ dx〉 |−〉 so just we go from |x〉 |s〉 |0〉 |−〉 to
|x〉 |s〉 |dx〉 |−〉 and our oracle takes |x〉 |s〉 |dx〉 |−〉 to− |x〉 |s〉 |dx〉 |−〉 if dx = s else it does nothing.The addressing
scheme will be a quantum addressing scheme also. An important thing to note is that we can load all the data
as a superposition and will do the search in O(

√
N) operations but the amount of resources needed for storing

the data is pretty much the same as that of a classical computer but these resources are far more cheaper for
a classical computer which makes this not all that economically viable also the Grover’s algorithm has better
uses as speeding up NP complete problems like the Hamiltonian cycle problem.

4.2.5 Optimality of the algorithm and Black box limits

Now we know that the search algorithm requires O(
√
N) queries but it turns out that we cannot actually

do any better than that. Suppose we start with some |ψ〉 and for the sake of simplicity we stick to one solution
|x〉 and our oracles Ox = I − 2 |x〉 〈x| and we use the oracle exactly k times and perform U1, U2, ...Uk between
each of these oracles. We now define

|ψxk〉 = UkOxUk−1Ox....U1Ox |ψ〉 (4.12)

|ψk〉 = UkUk−1....U1 |ψ〉 (4.13)

Our goal is to bound the quantity Dk =
∑
x || |ψxk〉 − |ψk〉 ||2 which is essentially the deviation after k steps

without using the oracles. If Dk is small then the states would be very hard to distinguish in between so this
gives us a clue of how much oracles are required to be used.
We now prove inductively Dk ≤ 4k2

Dk+1 =
∑
x

||Ox(|ψxk〉 − |ψk〉) + (Ox − I) |ψk〉 ||2 (4.14)

30

We can write (Ox − I) |ψk〉 = −2 |x〉ψk〉 |x〉

Dk+1 ≤
∑
x

(||(|ψxk〉 − |ψk〉)||2 + 4||(|ψxk〉 − |ψk〉)|| | 〈x|ψk〉|+ 4| 〈x|ψk〉|2) (4.15)

Applying Cauchy Shwarz inequality on the second term on RHS and noting
∑
x | 〈x|ψk〉|2 = 1 gives us

Dk+1 ≤ Dk + 4

(∑
x

||(|ψxk〉 − |ψk〉)||2
) 1

2
(∑

x

| 〈x|ψk〉|2
) 1

2

+ 4 (4.16)

Dk+1 ≤ Dk + 4
√
Dk + 4 (4.17)

Clearly if we assume Dk ≤ 4k2 then we get from eq. 4.17 that Dk+1 ≤ 4(k + 1)2. Now lets assume that
| 〈x|ψxk〉|2 ≥ 1/2 so we get our search result at least with 0.5 probability. We now define Ek =

∑
x || |ψxk〉−|x〉 ||2

and Fk =
∑
x || |x〉 − |ψk〉 ||2. We can see that Ek ≤ (2 −

√
2)N since || |ψxk〉 − |x〉 ||2 = 2 − 2|〈x|ψxk〉| and also

Fk ≥ 2N − 2
√
N which we can obtain using the Cauchy Shwarz inequality. We know

Dk =
∑
x

||(|ψxk〉 − |x〉) + (|x〉 − |ψk〉)||2 (4.18)

Dk ≥
∑
x

|| |ψxk〉 − |x〉 ||2 +
∑
x

|| |x〉 − |ψk〉 ||2 − 2
∑
x

|| |ψxk〉 − |x〉 || || |x〉 − |ψk〉 || (4.19)

From Cauchy Shwarz inequality we know
∑
x || |ψxk〉 − |x〉 || || |x〉 − |ψk〉 || ≤

√
EkFk so we can write eq 4.19 as

Dk ≥ Ek + Fk − 2
√
EkFk = (

√
Ek −

√
Fk)2 (4.20)

Now if we use the inequalities of Ek and Fk we get that Dk ≥ cN when N is sufficiently large and c is any

constant lower than (
√

2 −
√

2−
√

2)2 ≈ 0.42 and since we established Dk ≤ 4k2 we get that k ≥
√
cN/4 so

we can see that we get the complexity of O(
√
N) however we cannot get a greater improvement clearly.

While this means that we found the best possible quantum search algorithm, it also means that we cannot get
a speedup like that of O(logN) which would be a dream result. Many researchers believe that NP - complete
problems involve unstructured searches so a speedy search algorithm can help solve this but this would be pretty
bad for Quantum computing since then it would mean that BPQ does not contain NP complete however that is
not necessary since factoring which is a little more difficult than NP but not NP complete (a class called NPI)
has an efficient implementation here so it might just be a matter of time till we find some quantum approach
for NP complete.

Now if we were to define the decision problem for whether a solution exists or not i.e. given f(x) of the
oracle does there exist x such that f(x) = 1. F (X) = X0 ∨ X1 ∨ ... ∨ Xn−1 where Xk = f(k). This decision
problem can be shown to be equivalent to the search problem for the given oracle itself. Now if we try to
generalize this F (X) for operations other than OR to even go over for AND, PARITY , MAJORITY we
obtain some interesting limits for quantum query complexity.
Let the deterministic quesry complexity be D(F) and the equivalent for quantum computers we can take to be
QE(F). The quantity we are concerned with is Q2(F) which is the query complexity for an accuracy of 2/3.
This 2/3 is just arbitrarily chosen since our only concern is to have it larger than 1/2 so we can make it tend
to 1 after running it multiple times. Note that Q2(F) ≤ QE(F) ≤ D(F) ≤ N . Now since these are boolean
functions, we have X2

k = Xk so using this we can define the minimum degree polynomial of F (X) as p(X)

p(X) =
∑

Y ∈{0,1}N
F (Y)

N−1∏
k=0

[
1− (Yk −Xk)2

]
(4.21)

Quite trivially this will be a unique representation otherwise it wouldn’t be the minimum degree polynomial.
We will denote the minimum degree of F (X) as deg(F). The degree of OR, AND, PARITY are actually N
and in fact most functions have degree of order N and it has also been proven that

D(F) ≤ 2deg(F)4 (4.22)

and also
D(F) ≤ 216deg(F)6 (4.23)

Now let us take the situation where we have performed T oracle queries in the quantum computer so our state is

31

now
∑2n−1
k=0 ck |k〉. We will prove that ck are polynomials of at most degree T . Let us start with the state |ψ0〉 =∑

ij (ai0j |i〉 |0〉+ ai1j |i〉 |1〉) |j〉 where the first label is of n qubit register followed by a 1 qubit register and then
a m− n− 1 qubit register. After the oracle query we will obtain |ψ1〉 =

∑
ij (ai0j |i〉 |Xi〉+ ai1j |i〉 |Xi ⊕ 1〉) |j〉

which we can write as

|ψ1〉 =
∑
ij

[
((1−Xi)ai0j +Xiai1j) |i0〉+ ((1−Xi)ai1j +Xiai0j) |i1〉

]
|j〉 (4.24)

An important point to note is that the in between unitary operations do not change the degree and also here
we can see in eq. 4.24 that the coefficients are of degree 1 and on extending this we can see that the coefficients
after T queries will be of order less than or equal to T . The probability of any of the states would be |ck|2
which would be of degree less than or equal to 2T and so the total probability of obtaining a 1 from the oracle
would also be a polynomial of degree at most 2T since it is just the sum over the subsets of these probabilities.
This probability polynomial would equal F (X) in the case where we are certain of having executed F (X)
so we would get deg(F) ≤ 2T so we get QE(F) ≥deg(F)/2 and if we have that the probability polynomial
approximates F (X) it still would have the same limits on degree so we also get Q2(F) ≥deg(F)/2 and from eq.
4.22 and 4.23 we get

QE(F) ≥
[
D(F)

32

]1/4

, Q2(F) ≥
[
D(F)

13824

]1/6

So as we can see that without modifying the black box itself we cannot achieve anything faster than a polynomial
speedup for this kind of problems.

4.2.6 Interesting applications of Grover’s algorithm

Apart from also being used for speeding up NP complete problems, we can also develop an algorithm for
finding the smallest number from a set of N numbers which are indexed as T [i] for i ∈ 0, 1..N − 1 The procedure
for it goes something like this when we assume a success probability of 1/2:

1. Choose threshold index 0 ≤ y ≤ N − 1 uniformly at random.

2. Repeat the following and interrupt it when the total running time is more than 22.5
√
N + 1.4 log2N .

Then go to stage 2(c).

(a) Initialize the memory as
∑
j

1

N
|j〉 |y〉. Mark every item j for which T [j] < T [y].

(b) Apply the quantum exponential searching algorithm of [2].

(c) Observe the first register: let y′ be the outcome. If T [y′] < T [y], then set threshold index y to y′.

3. Return y.

For the step 2(a) it would in convention take logN steps an the search algorithm we use has complexity of
O(
√
N) as we have already established so for a large N the complexity is O(

√
N) also the algorithm would on

average require O(log(N)
√
N) accesses to the database. It must be noted that the algorithm can run infinitely

long so we will call that case the infinite algorithm There are some lemmas of this we can see:
Lemma 1: Let p(t,r) be the probability that the index of the element of rank r will ever be chosen when the
infinite algorithm searches among t elements. Then p(t,r) = 1/r if r ≤ t, and p(t,r) = 0 otherwise
For r > t it is trivial. We can prove this using induction for r ≤ t. Lets assume p(k, r) = 1/r for k ∈ [r, t] if we
mark t+ 1 elements then we have

p(t+ 1, r) =
1

t+ 1
+

t+1∑
k=r+1

1

t+ 1
p(k − 1, r) =

1

r

Lemma 2: The expected total time used by the infinite algorithm before y holds the index of the minimum is

at most m0 =
45

4

√
N +

7

10
log2N

The expected number of iterations used by the exponential searching algorithm is at most 9
2

√
N/t for finding

the index of marked item. So the expected number of minimum steps would be

N∑
r=2

p(N, r)
9

2

√
N

r − 1
=

9

2

√
N

N−1∑
r=1

1

r + 1

1√
r

N∑
r=2

p(N, r)
9

2

√
N

r − 1
≤ 9

2

√
N

(
1

2
+

N−1∑
r=2

r−3/2

)
≤ 9

2

√
N

(
1

2
+

∫ N−1

r=2

r−3/2

)
≤ 45

4

√
N

32

The expected number of steps from stage 2(a) before T [y] hold the minimum is at most

N∑
r=2

p(N, r) logN = (HN − 1) logN ≤ lnN logN ≤ 0.7 log2N

Here HN is the Nth harmonic number. After at most 2m0 iterations T [y] will hold the value with a probability
of 1/2 so here we can see why this only requires O(

√
N) complexity. Refer no. 12 in references for more about

this algorithm.

33

References and other links

1. Quantum Computation and Quantum Information by Isaac Chuang and Michael Nielsen.

2. Qiskit Textbook of IBM available here.

3. Quantum Information Science 1, Part 1 edX course available here.

4. Notes on Bloch Sphere available here.

5. Notes on Schmidt Decomposition available here.

6. The original EPR paper available here and the wikipedia article.

7. On the Einstein Podolsky Rosen Paradox by J.S. Bell available here.

8. Tsirelon’s Bound wikipedia article available here.

9. Using Quantum Gates instead of ancilla bits acrticle available here.

10. Elementary gates for quantum computation by Adriano Barenco, Charles H. Bennett, Richard Cleve,
David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John Smolin,and Harald Weinfurter
available here.

11. The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer by Michele Mosca,
Artur Ekert available here.

12. Quantum Algorithms Revisited by R. Cleve1, A. Ekert, C. Macchiavello and M. Mosca available here.

13. A quantum algorithm for finding the minimum by Christoph Dürr and Peter Høyer available here.

14. Quantum Counting by Gilles Brassard, Peter Høyer, and Alain Tapp available here.

15. Here is the repository which has my solutions to the exercises 3 and 4 of the IBM Quantum Challenge.

34

https://qiskit.org/textbook/preface.html
https://courses.edx.org/courses/course-v1:MITx+8.370.1x+1T2018/course/
http://web.cecs.pdx.edu/~mperkows/june2007/bloch-sphere.pdf
http://users.ox.ac.uk/~kch/demos/quantc7/fqt07w7.pdf
https://journals.aps.org/pr/pdf/10.1103/PhysRev.47.777
https://en.wikipedia.org/wiki/EPR_paradox
https://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf
https://en.wikipedia.org/wiki/Tsirelson%27s_bound
https://algassert.com/circuits/2015/06/22/Using-Quantum-Gates-instead-of-Ancilla-Bits.html
https://arxiv.org/pdf/quant-ph/9503016.pdf
https://arxiv.org/pdf/quant-ph/9903071.pdf
https://arxiv.org/pdf/quant-ph/9708016.pdf
https://arxiv.org/pdf/quant-ph/9607014.pdf
https://arxiv.org/pdf/quant-ph/9805082.pdf
https://github.com/mahadevans2432/IBM-Quantum-Challenge

	Introduction
	Turing Machine
	The set of computational problems
	Reversible circuits
	Maxwell's Demon

	Quantum Mechanics
	Postulates of Quantum Mechanics
	Qubits
	What is a Qubit
	Bloch Sphere
	No-Cloning theorem

	Quantum measurement
	Projective Measurements
	Heisenberg's uncertainty principle
	POVM Measurements

	Density matrices
	Partial Trace and Reduced density operator
	Schmidt Decomposition

	EPR and the Bell inequality

	Quantum Circuits
	Quantum Gates
	Controlled gates
	Measurement in circuits and Quantum Teleportation

	Universality in Quantum Computing
	Two level unitary operators
	Approximating Unitary operators

	Simulation of Quantum systems

	Algorithms for Quantum Computing
	The Quantum Fourier Transform
	Phase estimation
	Order finding and factoring
	Period finding
	Discrete logarithms
	Hidden subgroup problem
	Deutsch-Josza Algorithm and Simon's Algorithm

	Search algorithms
	Grover's Search Algorithm
	Hamiltonian for search algorithm
	Quantum Counting
	Searching an unstructured database
	Optimality of the algorithm and Black box limits
	Interesting applications of Grover's algorithm

	References and other links

