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ABSTRACT

Quantum simulation is a very interesting problem, while hard in nature to implement on classical
computers one can find efficient ways to implement them in certain cases using quantum systems.

Here we aim to explore algorithms for the execution of Hartree-Fock methods, configuration
interactions, and coupled-cluster type calculations on quantum computers.

1 Review on Quantum Simulation

This section is made with reference to [3].

1.1 Introduction

The problem of creating a simulation of a quantum system is a famous and very difficult task. If one were to make use
of a classical computer the resources required would scale exponentially. For example if one were to store a state of
N spin 1/2 particles we would need to store 2N numbers for the state and 4N for the unitary evolution (this is about
4TB for N = 40).
There do exist certain classical stochastic methods which can be used for certain systems (specifically those where
the functions being integrated do not change sign and vary slowly). The Quantum Monte Carlo methods offer a
polynomial time implementation for the quantum many body simulation.
One of the alternatives to simulate quantum systems was proposed by Feynman. Bluntly put we use quantum systems
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to simulate quantum systems. The method described uses a mapping of the desired state and desired evolution to a state
of the system and it’s evolution. We denote the system state by |ϕ〉 and it goes from |ϕ(0)〉 to |ϕ(t)〉 with evolution
U = exp(−ι~Hsyst). The simulator state |ψ〉 goes from |ψ(0)〉 to |ψ(t)〉 with evolution U

′
= exp(−ι~Hsimt). If

we can create a mapping between the final and initial states and the evolution operator, we can simulate this system.

1.2 Digital and Analog Quantum Simulations

1.2.1 Digital Quantum Simulation

Here we make use of qubits for simulating the systems. Suppose we want to simulate spin 1/2 particles, we assign
each particle to one qubit and we prepare our simulator state |ψ(0)〉 using the 1,0 convention for spin up and down
respectively. For getting |ψ(t)〉 = exp(−ι~Ht) |ψ(0)〉 we apply the unitary U = exp(−ι~Ht) to our initial state by
decomposing it into single qubit and two qubit gates (eg: U3 and CNOT gates are universal). This is referred to as
DQS (digital quantum simulation) and since we can make a circuit for all unitaries, DQS is universal however we need
not be able to find an efficient decomposition for all unitaries.
State preparation in general is a task which need not be efficient but in some cases there are convenient efficient
algorithm. For example there is an algorithm for efficiently preparing a state ofm electrons occupying n orbitals using
recursion to reverse engineer the given state to the |0〉⊗(n)

For the actual evolution of state we use the Trotter’s formula for dealing with systems of form H =
∑n
i=1Hi by using

the fact that limn→∞(
∏
i exp(Hi/N))N = exp(

∑
iHi) since all the commutation terms are second order with 1/N

hence in the limit go to zero so we break our unitary into small time steps to make sure that the error doesn’t go large.
The algorithms functions like this (reference: [7])
Inputs: The initial state |ψ0〉 along with the Hamiltonian H =

∑L
k=1Hk, the error range δ and time tf for which we

have to find |ψ(tf )〉. Here U∆t =
∏L
k=1 exp(−ι~Hk∆t)

Outputs: The state | ˜ψ(tf )〉 such that | 〈 ˜ψ(tf )| |2 < 1− δ
Procedure:

1. Initialize state as |ψ̃0〉 = |ψ0〉.
2. Iterative update |ψj+1〉 = U∆t |ψj〉.
3. j = j + 1; goto 2. while j∆t < tf .

4. | ˜ψ(tf )〉 = |ψ̃j〉 final result

Runtime: This typically functions inO(poly(1/δ)) operations. HereU∆t is a unitary which describes the approximate
evolution over a time of ∆t
Now comes the process of measurement. Generally for quantum systems this is done via quantum state tomography
however those require resources that scale exponentially with the size of the system. To get around this estimation is
done of correlation functions or spectra of operators.

1.2.2 Analog Quantum Simulation

In analog quantum simulation a real quantum system is used to simulate another quantum system and the real quantum
system would be controllable hence one can make inferences about the simulated system using this possibly easier
to control system by using mappings. The mappings are made as Hsim = fHsysf

−1 where the initial state is
transformed using f and we get the final state by transforming back with f−1. Essentially we must note that Hsim

and Hsys have the same eigenvalues for this to be a valid mapping. An example of hamiltonians like this would be a
hamiltonian describing a gas of interacting bosonic atoms in a periodic potential and the Bose-Hubbard hamiltonian.

Hsim = −J
∑
i,j

â†i âj +
∑
i

εin̂i +
1

2

∑
i

n̂i(n̂i − 1) (1)

HBH = −J
∑
i,j

b̂†i b̂j − µ
∑
i

n̂i +
1

2

∑
i

n̂i(n̂i − 1) (2)

The bosonic atoms hamiltonian is described in 1 where âj and â†j are the bosonic annihilation and creation operators
respectively and J is the hopping strength and U is the interaction strength. εi represents the energy offset. One can
see that eq1 is quite similar to eq2. The µ eq2 is the chemical potential and that is pretty much the only difference.
One can execute the Bose-Hubbard hamiltonian as described by eq2 using atoms in an optical potential. However
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there need not be a straightforward mapping in most situations. AQS does have quite some advantages over DQS such
as the fact that state preparation would occur naturally as the system would naturally gravitate toward the equilibrium
state normally. Also measurement can be done directly unlike the computational manipulation required in DQS.

1.3 Resource estimation

There is a general rule of thumb that to outperform a normal computer with a quantum computer one would need
somewhere between 40 to 100 qubits. There are plenty of interesting things that can be done with about 10 qubits too
from proof of concept simulations to even quantum chaos. However when you only need a few qubits you might as
well use a classical computer. In DQS the estimate for representing N particles with pairwise potential would require
n qubits for representing the wave function as a discrete variable and we would need m qubits for estimation of
values to some precision. The Coulomb potential can be calculated inO(N2m2) steps which is clearly an exponential
improvement from the classical way of calculation. There is however an overhead cost in for the gates as the step size
decreases in trotterization.
It is stated that AQS has less stringent resource requirements and can proceed useful results with classical computers.
In AQS one can manipulate a larger number of particles with more resources for example hundreds of thousands of
atoms have been trapped using only three laser beams.
In AQS effects of decoherence are generally believed to be less dramatic and is even suggested that it might be useful
as a way of modelling decoherence of the simulated system. If the noise level naturally present in the simulator is
lower than the simulated system one can artificially supplement the noise so that it faithfully mimics the simulated
system. In principle one can make use of the natural symmetries present in the system so as to modify the effective
decoherence using appropriate mappings. There are cases where fault tolerant methods are inefficient compare to
trotter approximation such as finding the low lying spectrum of a pairing hamiltonian in an NMR implementation. Two
qubit entanglement was found to be exponentially sensitive to both small changes in the hamiltonian and locations of
the chosen qubits due to natural ordering introduced on the qubits by coding of the simulated system.

1.4 Physical Realizations

All physical systems that can be used as a quantum computer would also be a universal machine for DQS. However
there are various quantum systems that can be used to implement AQS.

1.4.1 Atoms and Ions

Neutral atoms in optical lattices are well suited to mimic solid state systems. These optical potentials can be adjusted
to change geometry and dimensionality of lattice like creating triangular or Kagome lattices. These are quite flexible
systems where there are several controllable parameters and there are both bosonic and fermionic elements that can be
used here. A general Hubbard hamiltonian is written as

H = Hhop +Hinteraction +Hpot +Hinternal (3)

One can simulate the Mott insulator-superfluid phase transition using this system by tuning the on-site interactions
using Fresbach resonances. Continuous tunability of interaction strength allows one to enter a regime called the
unitary regime where interaction strength is comparable to Fermi energy so we only have one energy scale in our
system. Addressing individual atoms is a tough task however due to the best laser focusing widths are typically near
the scale of lattice distance (0.5− 0.8µm)
One can even use these for DQS since one can make controlled operations by using a double optical potential with
interaction between neighbouring atoms.
Using ions one can make multiple qubit gates by making use of their Coulomb repulsion and ion qubits tend to have
much longer coherence times (in the order of seconds) and can also make sequences of high fidelity quantum gates.
The quantum states for trapped ions are mostly manipulated using resonantly driving transitions between internal
states of the ions or resonantly driving sideband transitions involving the internal states and vibrational states of the
ions in the trapping potential. The hamiltonian describing coupling between internal and vibrational modes due to
laser driving at red-sideband frequency is the following

H = ι~ηΩ[exp(ιϕ)σ+a− exp(−ιϕ)σ−a
†] (4)

Here Ω is the Rabi frequency of transition between the internal states, σ+ and σ− are the two level atom transition
operators. a, a† are the ladder operators for the vibrational modes and φ is laser phase and η is the Lambe-Dicke
parameter. Using this one can realize quantum gates for DQS and even some hamiltonians for AQS. High fidelity
one,two,three qubit (toffoli) gates have been implemented using this. Ions have generally been trapped using linear
harmonic traps.
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1.4.2 Nuclear and electronic spins

Nuclear spin qubits have long coherence times (> 1s) and high fidelity quantum gates of up to 12 qubits have been
demonstrated. Here nuclear spins are manipulated using NMR (nuclear magnetic resonance). The general form of the
hamiltonian is

H = −~γB
∑
i

Izi +
∑
i>j

JijI
z
i I
z
j (5)

Here I is the angular momentum operator and J represents the spin-spin coupling coefficients. B is magnetic field
and γ is the gyro-magnetic ratio. The different transitions between pairs of energy levels generally have distinct
resonance frequencies which makes it possible to implement multi qubit gates using rf (radio frequency) pulses.
Scaling is however a big issue here but can be possibly addressed by making use of nitrogen vacancy centers for
strongly correlated systems.
Another system that is used are electron spins in semiconductor quantum dots. Quantum dots are semiconductor
systems where excitations are confined in small regions in one or two dimensions and if they are roughly as wide as
the wavelength of charge carrier they sort of have quantized levels similar to those of actual atoms. Readout can be
manipulated both electrically and optically. They have decay times of > 1s. A hamiltonian for an array of quantum
dots is given by

H =

n∑
j=1

µBgj(t)Bj(t) · Sj +
∑

1≤j<k≤n

Jjk(t)Sj · Sk (6)

The first term comes form energy of applied magnetic field and the second term is exchange interaction due to virtual
tunneling between quantum dots and Sj is spin of the electric charge quanta of the jth dot.

1.4.3 Superconducting circuits

There are many ways in which one can encode quantum information in superconducting circuits: number of super-
conducting electrons on a small island, direction of current around a loop or in oscillatory states of the circuit. The
circuit can be manipulated by applied voltages and currents. These have an advantage over real atoms since one can
tailor characteristic frequencies, interaction strengths and so on much easily. Hamiltonian for N charge (flux) qubits
biased at their symmetry points (optimal for quantum coherence) coupled capacitively is

H = −
N∑
i=1

∆i

2
σZi −

∑
i,j

Jijσ
Z
i σ

Z
j (7)

Where ∆i is level splitting and the Jij is for coupling strength between i and j qubits. It must be noted that these are
not two level systems however these additional levels could possibly be utilized for AQS for spin greater than 1/2.

1.4.4 Photons

Photons can carry quantum information over long distances and would hardly be affected by noise and decoherence
and can encode qubits using polarization. One qubit gates can easily be realized using linear optical components
however implementing two qubit gates for photonic systems are much more difficult. These have been used for many
impressive tasks however like to calculate the possible fractional statistics of anyons using a six photon graph state,
calculate the energy system of spectrum of hydrogen to 10 bits of precision and even simulate frustrated spin systems.
These do have issues in flexibility and scalability so have a long way to go.

2 Hartree-Fock Theory

2.1 The formulae

The main aim here is calculations involving many electron systems in a pairwise potential. Using the Born-
Oppenheimer approximation one can find the exact solutions for a hydrogen atom (or any one electron atom) however
exact solutions cannot be found once we have more than one electron. The idea of the approximation is to consider
that nuclei are relatively stationary since electron movement is much faster. Let’s first write the for an N electron
system with Nnucl nuclei each with some Zj atomic number at ~Rj .

Hel =

N∑
i=1

p2
i

2m
−

N∑
i=1

Nnucl∑
j=1

Zje
2

|~ri − ~Rj |
+

N∑
i>j=1

e2

|~ri − ~rj |
(8)
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Our aim is to solve H |ψ(1, 2, . . . , N)〉 = E |ψ(1, 2, . . . , N)〉. We must note that this will be anti symmetric since
it describes fermions. We will adopt the mean field approach where we assume particle’s dynamics are decided by
a mean field created by particles at rest. Another assumption is that each electron is described by a single electron
wavefunction called the spin orbital which we represent as φi(x) which has both a spatial and spin component. The
final solution is represented as a determinant called the slater determinant

ψ(~x1, ~x2, . . . , ~xN ) =
1√
N !


φ1(x1) φ1(x2) . . . φ1(xN )
φ2(x1) φ2(x2) . . . φ2(xN )

...
...

. . .
...

φN (x1) φN (x2) . . . φN (xN )

 (9)

The electrostatic potential felt by an electron occupying orbital φi(~r) due to the mean field of remaining N − 1
electrons would be

Vi(~r) =

N∑
j=1,j 6=i

〈φj |
e2

|~r − ~r′|
|φj〉 (10)

We also will define Vnucl(~r) which is the nuclear attraction potential felt by an electron at ~r then we have

Vnucl(~r) =

Nnucl∑
i=1

Zie
2

|~r − ~Ri|
(11)

From this we get the Hartree equation(
− ~2

2m
∇2 + Vnucl(~r) + Vi(~r)

)
.φi(~x) = εiφi(~x) (12)

Clearly the nuclear attraction potential is a one eletron operator and the electrostatic potential is a two electron operator.
The following equation shows the expectation values for one electron and two electron operators.

〈Φ|O1 |Φ〉 =
∑
i

〈φi| f |φi〉 = fii, O1 =
∑
i

f(~ri) (13)

〈Φ|O2 |Φ〉 =
1

2

∑
j

∑
i

(〈φiφj | g |φiφj〉 − 〈φiφj | g |φjφi〉), O1 =
∑
i,j

g(~ri) (14)

So the whole thing is reduced into an eigenvalue problem. We define the operators h(~ri) =
p2
i

2m
+Vnucl(~ri), VH |φi〉 =∑N

j=1 〈φj |
e2

r12
|φj〉 |φi〉 , Vex |φi〉 =

∑N
j=1 〈φj |

e2

r12
|φi〉 |φj〉 and the problem reduces to the following eigenvalue

problem
(h+ VH + Vex) |φi〉 = εi |φi〉 (15)

The total energy however is not simply the sum of all the orbital energies for the system and is actually EHF =
1

2

∑N
i=1(εi + hii). We call the fock operator as F = h+ VH + Vex.

2.2 Canonical transformations

This part is made with reference to supplementary materials provided in [1]. For solving the hartree fock equations
and arriving at the asymmetric state the state is variationally solved such that energy is stationary with respect to first
order changes in the wavefunction and we start from an arbitrary orthogonal basis {φi}. So we solve 〈δψ|H |ψ〉 = 0.
We assume the solution is represented as

〈r |ψ〉 = 〈r|
n∏
i=1

a†i |vac〉 =
1√
n!

det

χ1(r1) . . . χ1(rn)
...

. . .
...

χn(r1) . . . χn(rn)

 (16)

We will now index the states which are in the product wavefunction by i and those which aren’t by a. We then can
write the first order variation as 〈δψ| = 〈ψ| a†iaaζ where ζ is the first order variation in χi so we get the expression
for the stationarity of the state as

〈ψ| a†iaaH |ψ〉 = 0 (17)
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We also have the one-body fermionic generators form a closed lie-algebra

[a†paq, a
†
ras] = δq,ra

†
pas − δp,sa†ras (18)

The adjoint representation of an element of the algebra would be κ =
∑
p,q κp,qa

†
paq and it’s commutators can

be represented as [κ, a†p] = a†pκp,q and [κ, ap] = apκ
∗
p,q . We then define similarity transformations on the ladder

operators: eKa†pe
−K =

∑
q a
†
quq,p, eKape−K =

∑
q aqu

∗
q,p and here u is the matrix given by the exponentiation of

the coefficient matrix for the generator operator κ so it is u = eκ.
Any rotation of the underlying basis can now be written with the similarity transform as

|φ(κ)〉 = eKa†1e
−K . . . eKa†ne

−K = eK |ψ〉 (19)

Now before we proceed we must note that the 2-RDM (reduced density matrix) can be obtained from the 1-RDM since

1Dj
i = 〈φ| a†jai |φ〉 (20)

2Dpq
ij = 〈φ| a†pa†qajai |φ〉 = 1Dp

i
1Dq

j −
1Dq

i
1Dp

j (21)

Using expression of energy we get that we can express energy in terms of the 1-RDM purely since we can write the
2-RDM in terms of 1-RDM.

E(κ) =
∑
ij

hij 〈φ(κ)| a†iaj |φ(κ)〉+
∑
ijkl

Vijkl 〈φ| a†ia
†
jakal |φ〉 (22)

=
∑
ij

hij
1Dj

i +
∑
ijkl

Vijkl
2Dij

lk (23)

3 Simulation of H2 molecule using chloroform

This section is essentially a summary of the ideas discussed in [2]. The paper shows results of calculation of ground
state of a hydrogen molecule which as done to 45 bits of accuracy in 15 iterations. The main idea of the calculation
is that the ground state is prepared using adiabatic state preparation and then phase estimation of eigen value is done
but instead of using the inverse fourier transform method, an iterative NMR interferometer is used. It must be noted
that to obtain a 45 bit accuracy in the phase value one would require 45 qubits in the register that is used for phase
measurement using the inverse QFT method if one wants to extract the whole information with one circuit.

3.1 Phase estimation using QFT

This is just a description of how phase estimation is done using the quantum fourier transform normally taken from
[7]. Suppose we have unitary operator U with an eigen vector |u〉 with an eigenvalue e2πφ where φ is unknown and
we wish to estimate its value. We us two registers, one which has t qubits and the other which is initialized in state
|u〉. Now lets say that the binary representation of φ is 0.φ1φ2...φt accurate to t places after the radix point.
The state of the first register will now be

Figure 1: Circuit for phase estimation. Note that we perform inverse Fourier transform on the first register and then a
measurement on the first register
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(|0〉+ e2πι0.φt |1〉)(|0〉+ e2πι0.φn−1φn |1〉).....(|0〉+ e2πι0.φ1φ2...φn |1〉)
2n/2

Clearly doing an inverse Fourier transform over this will give us the state |φ1φ2...φt〉 hence on measurement we will
be able to estimate this phase.

3.2 Description of the system

The hamiltonian of the hydrogen molecule can be described by the following equation

H =

2∑
i=1

(Ti +

2∑
j=1

Vij) +

2∑
i,j=1,i>j

Oij (24)

Here Ti is the kinetic energy of the ith electron and Vij is the Coulomb potential energy between the ith electron and
the jth nucleus and Oij is the Coulomb potential energy between the ith and jth electron. This is under the Born
Oppenheimer approximation where the nuclei are assumed at rest.
This molecule has two nuclei and two electrons and the two 1s orbitals can combine to form a gerade bonding orbital
and an ungerade antibonding orbital 4 spin orbitals which can be occupied hence giving 6 possible configurations (4
choose 2). The only two states we will be concerned with are the ground state |Ψ0〉 and the double excited state |Ψ22

11〉
giving us the following hamiltonian matrix which has a theoretical eigen value of -1.851 570 929 351 19 a.u.

H =

(
〈Ψ0|H |Ψ0〉 〈Ψ0|H |Ψ22

11〉
〈Ψ22

11|H |Ψ0〉 〈Ψ22
11|H |Ψ22

11〉

)
=

(
−1.8310 0.1813
0.1813 −0.2537

)
When doing the experimental implementation chloroform (CHCl3) with carbon-13 dissolved in d6 acetone as a two
qubit computer where 13C nulceus is used for the system qubit and the H atom is used for probe qubit. The natural
hamiltonian of the system is the following

HNMR =
ωp
2
σpz +

ωs
2
σsz +

πJps
2

σpzσ
s
z

Here Jps represents the coupling constant and is typically 214.6 Hz in value. The ωs/2π and ωp/2π are the Larmor
frequencies.

3.3 Calculation of the ground state energy

The first step is creation of ground state of H in the system qubit. It is essentially done by applying three pulses
of rotations Rx(θ3)R−y(θ2)R−x(θ1) in multiple steps. In the ASP process we start with an initial hamiltonian of
H0 = σx and is prepared at it’s ground state of |−〉. This is then driven to the actual system hamiltonian H using
linear interpolation Had = (1− t

T )H0 + t
TH and the t goes from 0 to T and so |Ψ〉 the ground state is approached as

time passes. The total evolution time is taken as T = 5.52 a.u. to ensure success of ASP
The probe qubit is kept at the |+〉 state initially and is used as a controlled qubit for applying the Uk operator which
starts as U0 = U . The iterative process is done as Uk+1 = [e−ι2πφ

′
kUk]2

n

, φ′k =max{φk − φerrbd, 0} where φk is the
phase shift measured in the kth iteration. In each iteration the phase shift caused by Uk is measured and here n is the
number of bits extracted in each iteration and we have 2−n ≥ 2φerrbd. Essentially each iteration for the given setup
increases the accuracy by 3 bits.
The controlled Uk is essentially the operation Uk = |↑〉 〈↑| ⊗ I + |↓〉 〈↓| ⊗ Uk. Applying this on |+〉 |Ψasp〉 gives us
1√
2
(|↑〉+ eι2πφ |↓〉) |Ψasp〉. In an interferometer this phase shift will be seen as a relative phase between ”two paths”

of the |0〉 and |1〉 states hence is read out directly in NMR. Here φ = −Eτ/2π essentially and since one can choose
any τ it is taken as τ = π/

√
(2H(1, 2))2 + (H(1, 1)−H(2, 2))2 for convenience since there is a constant α which

is length of one of the pulses used in implementing the Uk operation which becomes 8k−1π/2 with this choice of τ .
For measurement one can measure the NMR signal of the probe qubit which is essentially just phase detection and
gives us the fourier transformed spectrum of relative phase information. Each iteration would have some phase mea-
surement and to get the actual phase value the iterative equations are used. φci−1 = φci/φerrbd + φ′i−1 is the recursive
relation and we use φck = φk where φk is the measured phase of the kth iteration and we get the result that φexp = φc0

3.4 Conclusions

The main takeaway from this paper was that without using the traditional setup for a phase measurement using inverse
fourier transform, an iterative setup which uses NMR interferometer readings can provide a highly accurate answer
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with a much smaller setup. A thing to note however which is a problem here is that implementation of the Uk gates is
possible using a pulse sequence for this small scale but in general for U j where j is fairly large would be done by j
successive U implementations instead of finding a suitable pulse sequence hence resulting in cascading of errors. One
possible work around which can be slightly favorable is to find pulse sequences for a good number of U2n (possibly
by an algorithm specifically for this) and then for U j we just use the binary implementation which puts a cap of
O(log2(j)) in size but finding the sequences should be efficient.

4 Hardware efficient VQE for small molecules and quantum magnets

This section is a summary of the ideas discussed in [4] which discusses a hardware efficient variational quantum
eigensolver for finding ground states of some systems such as molecules as large as BeH2 and for an antiferromagnetic
Heisenberg model in an external magnetic field and does so using a stochastic optimization routine to create ground
states.

4.1 Variational Quantum Eigensolver

Variational quantum eigensolvers are used for minimization of eigenvalue obtained from a certain state which would in
fact be it’s ground state. The circuit is usually set to a certain depth say d with n qubits (See figures below). RyRz has
n× (d+ 1)× 2 parameters, Ry with linear entanglement has 2n× (d+ 1

2 ) parameters, and Ry with full entanglement
has d×n× (n+1)

2 +n parameters. Over a certain number of iterations, these parameters are varied so as to minimize

Figure 2: Circuit for linear entanglement

Figure 3: Circuit for full entanglement

the expectation value of the Hamiltonian 〈ψ|H |ψ〉. One can argue that this approach need not be universal since one
makes a different circuit as per value of depth and that would be true since arbitrary state preparation would require a
calculated approach most of the times and are proven to be efficient for some select cases (discussed in [3]).
The circuit used in [4] essentially makes the state as the following

|Φ(θ)〉 =

N∏
q=1

[Uq,d(θ)]× UENT ×
N∏
q=1

[Uq,d−1(θ)]× · · · × UENT ×
N∏
q=1

[Uq,0(θ)] |00 . . . 0〉 (25)

Here Uq,i(θ) is a single qubit Euler rotation of Z−X−Z applied on the q qubit at a depth of i. Here UENT is used to
give entanglement and can be seen as the sequence of CNOT gates on the above figures for linear and full entanglement
respectively but in case of this paper it was chosen as cross resonance gates. Z rotations were implemented as frame
changes and X rotations were implemented by appropriately scaling of calibrated Xπ pulses using a fixed total time
of 100 ns for every single qubit rotation.
The algorithm can be written as follows:

9
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1: Map the quantum Hamiltonian to a qubit Hamiltonian H
2: Set d as depth of circuit for trial state preparation
3: Choose a set of θi as parameters which are for rotations applied
4: Choose a number of samples S for the feedback loop and one Sf for final estimation
5: Choose the maximal number of control updates kL
6: while Ef has not converged, do:
7: procedure Quantum feedback loop:
8: for k = 1 to kL, do:
9: Prepare trial states using θk and evaluate 〈H〉 with S samples
10: Update and store the controls θk
11: end for
12: Evaluate Ef = 〈H〉 with Sf samples using the best controls
13: end procedure
14: Increase d, kL, S, Sf
15: end while
16: return Ef

In line 9: and 10: the choice used for getting values of the new θk is done using optimization by gradient descent.
The paper uses a simultaneous perturbation stochastic approximation (SPSA) which has also been used in context of
quantum control and quantum tomography recently. In the SPSA approach at every step k, p symmetrical Bernoulli
distributions ∆k are sampled and ck and ak are chosen from already decided sequences that converge to zero. The
gradient is evaluated as gk(θk) using this

gk(θk) =
〈Φ(θ+

k )|H |Φ(θ+
k )〉 − 〈Φ(θ−k )|H |Φ(θ−k )〉

2ck
∆k (26)

Here θ±k = θk±ck∆k. We then update θk+1 = θk−akgk(θk). The convergence to the optimal solution can be proven
if the starting point lies in the domain of attraction however if not then convergence is not guaranteed and also in case
of multiple attraction points there would be issues. The sequences chosen in this paper were

ck =
c

kγ
, ak =

a

kα

with parameters {α, γ} = {0.602, 0.101} to ensure a smooth descent. The choice for c is decided based on magnitude
of energy fluctuations with the θk since larger energy fluctuations require a larger ck so that they do not affect gradient
approximations as much. For this c = 0.1 is chosen for realistic simulations and c = 0.01 is chosen for numerical
optimizations where energy is evaluated without fluctuations. The value for a is chosen so that there is a reasonable
angle update in the first step since it’s essentially like learning rate and so it is chosen so that the angle update is at
least 2π/10 and hence

a =
2π

5

c〈
| 〈Φ(θ+

k )|H |Φ(θ+
k )〉 − 〈Φ(θ−k )|H |Φ(θ−k )〉 |

〉
∆1

And here the 〈〉∆1
means averaging over the ∆1 distribution.

4.2 Finding the ground state energy for certain molecules

For the fermionic systems of molecules the hamiltonian can be written as

H = H1 +H2 =

M∑
α,β=1

tαβa
†
αaβ +

1

2

M∑
α,β,γ,δ=1

uαβγδa
†
αa
†
βaγaδ (27)

tαβ =

∫
dx1Ψα(x1)

(
−∇

2
1

2
+
∑
i

Zi
r1i

)
Ψβ(x1) (28)

uαβγδ =

∫ ∫
dx1dx2Ψ∗α(x1)Ψβ(x1)

1

|r12|
Ψ∗γ(x2)Ψδ(x2) (29)

For LiH and BeH2 perfect filling of the 1s orbitals in the basis where H1 is diagonalized and using a transformation
on the annhilation and creation operators we can write Hd

1 =
∑M
α=1 ω

′
αa
′†
α a
′
α and since the 1s states are effectively

filled one can approximate them to not interact with the higher orbitals and so this effectively reduces the number of
qubits required for mapping to 6 or 8 for LiH and BeH2 respectively.
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Due to these two orbitals being filled all those terms in the hamiltonian would essentially contribute to an energy shift
for single fermionic terms and also modifies the two fermionic terms since any terms with a

′†
α a
′
α with α ∈ {1s ↑, 1s ↓}.

We now map the H2 hamiltonian is mapped first onto 4 qubits using a binary tree mapping. The M spin orbitals are
listed by first listing M/2 spin up ones and M/2 spin down ones. Then Z Pauli operators are assigned on the basis of
the total number of electrons where if ZM has even parity of electrons it is assigned +1 and otherwise -1 and based on
the value of mod(m,4) we can decide what parity to assign to ZM/2 and if m is odd then this parity can be either +1
or -1 and it would not really affect anything and so we get a degeneracy. Using all this we can effectively map this for
H2, LiH and BeH2 as effectively 2,4 and 6 qubits each with 2, 25 and 44 tensor product basis sets and 4,99, 164 Pauli
terms respectively.
Now we have described the method of gradient descent however the measurements of expectation value of the hamil-
tonian is not done directly by measurement. We represent the hamiltonian as a weighted sum of T Pauli terms on N
qubits once mapping is done

H =

T∑
α=1

hαPα (30)

Where each Pα ∈ {X,Y, Z, I}⊗N and so we write the following by measuring each α-th Pauli operator.

〈H〉 =
T∑
α=1

hα〈Pα〉 (31)

Var[H] =

T∑
α=1

h2
α〈∆P 2

α〉 (32)

These individual Pauli operators are measured by correlating measurement outcomes of single qubit disperse readouts
in the Z basis. The issue however is that if one samples a large number of trial states there an be a significant overload
in measurement.
To minimize these sampling overheads the Pauli operators are grouped in sets s1, s2, . . . , sA which have terms that
are diagonal in the same tensor product basis. It is shown (in [4]) using numerical simulations that making use of
this grouping can offer better results without as much overhead as opposed to not grouping. Also in the experiments
done assignment errors which would occur at readout were taken into account by running readout calibrations at every
angle update and then correcting the sampling account using the calibrations. It must be noted that there would be
an exponential loss by weight of a certain Pauli operator and so binary tree encoding for representation of H as in
equation 30 is important to prevent exponential scaling.

4.3 Applying on Quantum Magnets

To demonstrate how the advantage of greater circuit depths is crucially dependent on the target Hamiltonian, the paper
explores a four qubit Heisenberg model in the presence of an external magnetic field. The Hamiltonian is described
for it as follows

H = J
∑
〈ij〉

(XiXj + YiYj + ZiZj) +B
∑
i

Zi (33)

Here 〈ij〉 indicates the nearest neighbour pairs, J is the strength of spin-spin interaction and B is the magnetic field
along the Z direction. The VQE technique is used to solve for the ground state energy. At J = 0 the ground state
is completely separable and one can obtain the best estimate for a circuit with d = 0 as depth since the state can be
characterized purely by rotations. However as J is increased, the ground states start getting more entangled and one
would require a d = 2 depth with some UENT in the circuit to get the best estimate.

4.4 Conclusion

The main motivation of this algorithm is that given a Hamiltonian mapping it will produce the state which would have
the minimum energy. The impressive feat I believe is that they were able to work this out for BeH2 which is a fairly
large molecule. It must be noted that as per the results obtained, the convergence of the energy happens at a value
which is at an error of around 0.015 hartree. Also the gradient descent approach brings a big issue if one were to try to
descent in functions where there are multiple minimas which one can only hope to avoid by choosing good parameter
sets since this would be dependent on whether the Hamiltonian can be mapped in such a way that uniform convergence
is guaranteed. One can also draw various similarities to Hamiltonians and cost functions for machine learning due to
the gradient descent approach and is in fact used in a quantum machine learning algorithm.
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5 Configuration Interaction

This section aims to summarize the discussions in [8].

5.1 The fundamentals

Configuration interaction (CI) is a method to solve the non relativistic Schrödinger equation described in equation 8.
We have invoked the Born-Oppenheimer approximation and so we have to only consider a basis ofN particle functions
if we have a N electron molecule. We will assume a complete basis set of orbitals as {χi(xi)} and we expand any
arbitrary N electron state as Φ(x1, x2, . . . , xN ) =

∑
ij...N bij...Nχi(x1)χj(x2) . . . χN (xN ).

Since this is a wavefunction describing electrons (which are fermions) we have the constraint on it being asymmetric
under exchange between any two electrons. As shown in equation 9 we get this by writing them as determinants
called as Slater determinants. However one must note that there is a complete set of all possible Slater determinants
which account for essentially replacing any number of spin orbitals which are filled with the unfilled ones and our final
wavefunction would be a superposition of all such combinations. Certain exchanges may hardly have contribution in
representation but some are essential to the representation of the wavefunction. We can hence write the state as a
superposition of these possible ”excitations” as shown in the below equation.

|Ψ〉 = c0 |Φ0〉+
∑
ra

cra |Φra〉+
∑

r<s,a<b

crsab |Φrsab〉+
∑

r<s<t,a<b<c

crstabc |Φrstabc〉+ . . . (34)

Here |Φar〉 is the Slater determinant formed by replacing spin orbital a in |Φ0〉 with spin orbital r. The CI method aims
to find these coefficients. While this may seem similar to perturbation theory, perturbation theory would approach this
by taking the |Φ0〉 as the dominant configuration and accordingly proceed and is sure to fail if the dominant configu-
ration itself is not dominant.
FUll CI corresponds to solving the Schrödinger’s equation exactly withing the space spanned by the specified one-
electron basis. If the one-electron basis is complete then this is called complete CI. As one can imagine the time
complexity for doing Full CI or even complete CI is quite high (more on this later). A much more doable approach
would first truncate the CI space and then proceed for example CISD only makes use of single and doubly excited
configurations. This approach does infact provide a fairly accurate picture by accounting for nearly 95% of the corre-
lation in small molecules in equilibrium configurations.
We now define a quantity called the correlation energy as follows

Ecorr = ε0 − EHF

Here EHF is the energy in the Hartree Fock limit and the exact non relativistic energy of the system is ε0. The
Hartree Fock energy would always be above the actual energy as can be seen by applying the variational theorem for
minimizing the functional below

L = 〈Ψ| Ĥ |Ψ〉 − E(〈Ψ|Ψ〉 − 1) (35)

On minimizing the above functional by setting δL = 0 one reaches the following equation (repeated indices are
summed over)

Hijcj = ESijcj (36)

Here |Ψ〉 =
∑
i ci |Φi〉, Hij = 〈Φi|Ĥ|Φj〉 and Sij = 〈Φi|Φj〉. For an orthonormal basis this reproduces the actual

Heisenberg equation. Since all energies would be greater than the actual minimum (which should be ε0) that shows
EHF ≥ ε0.
Another consequence of the variational theorem for CI is the convergence of the wavefunction. An approximate
variational wavefunction will have energy approaching that of the exact energy ε0 as the approximate wavefunction
approaches the exact one. While one may think that the variational approach on minimizing energy may not lead
us to a state that necessarily satisfies all properties of the actual wavefunction like dipole moment for example, for
a sufficiently large basis the wavefunction also converges along with the energy. Since one can extract all properties
correctly once we have the exact wavefunction we essentially have a proper convergence with a good enough basis
however the other properties may not converge as quickly as the energy would.

5.2 Reducing the CI space

A key part to being able to do CI is after the space has been truncated using certain techniques.
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5.2.1 Using symmetries in CI space

We first begin with which N electron basis functions are useful to include in the total CI space. If we can find a set
of these basis functions which contribute nothing to the hamiltonian then we might as well not use them. So let’s
say we have two eigenfunctions for some operator Â as |φ1〉 and |φ2〉 where they have different eigenvalues. If we
have that [Â, Ĥ] = 0, this means that 〈φ2| Ĥ |φ1〉 = 0 since they would be simultaneously diagonizable. This tells us
that if we can find a basis function which is an eigenfunction of an operator that commutes with the hamiltonian, all
eiegenfunctions of this operator which have a different eigenvalue can be excluded from the CI space.
For example we can pick the operator Ŝ2 of spin angular momentum and we know that it commutes with the hamil-
tonian. However the basis functions are generally not eigenfunctions of spin angular momentum but certain linear
combinations of them (called configuration state functions or CSFs) are and so using this we can directly reach that
contribution of any basis function with the wrong spin should be zero. We can extend this to ant kind of symmetry
operations of point groups enabling us to dispose of any basis states with incorrect irreducible representations.

5.2.2 Classification using excitation level

Often the truncation of CI space is done by ignoring all excitations beyond a certain level the most common being just
considering doubly-excited configurations (CISD). First we must note the slater-condon rules which are as follows for
a single electron operator for some n body system F̂ = sumif̂(i)

〈Φ0| F̂ |Φ0〉 =
∑
i

〈φi| f̂ |φi〉 (37)

〈Φ0| F̂ |Φam〉 = 〈φm| f̂ |φa〉 (38)

〈Φ0| F̂ |Φabmn〉 = 0 (39)

For a double electron operator for a many body system G =
∑
i,j 6=i ĝ(i, j) we have

〈Φ0| Ĝ |Φ0〉 =
∑
i,j 6=i

(〈φiφj | ĝ |φiφj〉 − 〈φiφj | ĝ |φjφi〉) (40)

〈Φ0| Ĝ |Φam〉 =
∑
i

(〈φmφi| ĝ |φaφi〉 − 〈φmφi| ĝ |φiφa〉) (41)

〈Φ0| Ĝ |Φabmn〉 = 〈φmφn| ĝ |φaφb〉 − 〈φmφn| ĝ |φbφa〉 (42)

〈Φ0| Ĝ |Φabcmno〉 = 0 (43)

Since the hamiltonian only has two body operators two states that differ in more than two excitations have no way to
interact and so we can write the hamiltonian matrix as follows

H =



〈Φ0|H |Φ0〉 . . .
0 〈S|H |S〉 . . .

〈D|H |Φ0〉 〈D|H |S〉 〈D|H |D〉 . . .
0 〈T |H |S〉 〈T |H |D〉 〈T |D |T 〉 . . .
0 0 〈Q|H |D〉 〈Q|H |T 〉 〈Q|H |Q〉 . . .
...

...
...

...
...

. . .

 (44)

Here |S〉, |D〉, |T 〉 and |Q〉 represent block of single, doubly, triply and quadruply excited determinants respectively
and the above matrix is hermitian and so only the lower diagonal terms have been written. This is essentially a block
diagonal form of writing the matrix and all terms of 〈S|H |Φ0〉 = 0 due to Brillouin’s theorem since the reference
wavefunction is obtained by the Hartree Fock method. While the other blocks need not be zero, they may be fairly
sparse.
It can be seen that CISDTQ gives very high percentage of correlation energy for smaller molecules and generally will
behave as the best option but will come at the cost of complexity. CISD gives about 95% correlation but only for
equilibrium configurations and fails at stretched configurations. CISDT does not give much of an improvement over
CISD and this shows that quadruple excitations are far more important than the triple excitations.

5.2.3 Size of CI space

Before commenting on the CI space size let us explore some different basis sets. We can define a certain orbital type
called a Slater type orbital

φSTOabc = Nxaybzce−ζr (45)
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here L = a+ b+ c and these orbitals are H atom like atleast for 1s but clearly are not pure spherical harmonics. They
do give correct short range and long range behavior.
The next kind of orbitals which are easier to compute and used far more often are Gaussian type orbitals

φGTOabc = Nxaybzce−ζr
2

(46)

which again have L = a + b + c. These no longer are similar to the H atom like but are easier to compute due to
the Gaussian form. Now since we are losing accuracy here there is another kind of orbital based on this called the
contracted Gaussian type orbital which mimic an STO using GTOs in a linear sum. If n GTOs are used it is called as
STO-nG and φCGTOabc = N

∑n
i=1 x

aybzce−ζir
2

. All these fall under minimal basis where one basis function (STO,
GTO or CGTO) is used for the atomic orbital.
If one uses two basis functions for the atomic orbital it is called double-zeta, here specifically basis functions with
different l values are mixed to get polarized functions and so is called double zeta polarization (DZP). This can be
extended to any number of basis functions for the atomic orbital but beyond a point would surely be overkill. There is
another example known as the Pople’s split valence double zeta set 6-31G which uses 6 Gaussians for a CGTO core
orbital and valence is ibed by two orbitals of 3 and 1 Gaussian respectively.
Now for getting the size of the CI space we will include spin symmetry and ignore spatial symmetry and apply Weyl’s
dimension formula. The dimension of CI space in CSFs is given by

DCSF
nNS =

2S + 1

n+ 1

(
n+ 1

N/2− S

)(
n+ 1

N/2 + S + 1

)
(47)

The dimension in determinants ignoring sparial symmetry is

Ddet
nNS =

(
n

N/2− S

)(
n

N/2 + S

)
(48)

From the form of the above equations we can make out that computational complexity when working with this sized
space would go in super-polynomial time. It’s been seen that CISD scales as O(n6) and CISDTQ scales as O(n10)
where n is the number of orbitals. This is extended as O(n2m+2) where m is the number of excitations being taken
account of. A proper proof for the scaling can be found in [gatech notes]. This shows that for full CI we have
O(Ddet

nNSN
2n2) which is clearly superpolynomial time.

5.2.4 Frozen-core approximation

The frozen core approximation is quite common in CI calculations. This essentially is to assume that all the lowest
lying molecular orbitals have to be constrained to be doubly occupied. These are primarily the inner shell atomic
orbitals which would be 1s for atoms lithium to neon and 1s, 2s, 2px, 2py, 2pz for sodium to argon. This effectively
decreases the size of the CI space quite significantly and we can effectively write the modified hamiltonian as follows

Ĥ0 = Ec +

N−Nc∑
i=1

ĥc(i) +

N−Nc∑
i>j

1

rij
(49)

Here the offset energy of Ec accounts for the doubly occupied orbitals which are now fixed and has the following
expression

Ec = 2

nc∑
i

hii +

nc∑
ij

{2(ii|jj)− (ij|ji)} (50)

And the operator ĥc(i) is the one electron hamiltonian operator for electron i in the average filed produced by the Nc
core electrons.

ĥc(i) = ĥ(i) +

nc∑
j=1

{
2Ĵj(i)− K̂j(i)

}
(51)

Here Ĵj(i) and K̂j(i) represent the standard Coulomb and exchange operators respectively. We can also define a
frozen core density matrix as P cρσ =

∑nc
i CiρC

i
σ where Ciρ is the contribution of atomic orbital ρ to the molecular

orbital i and with this we can rewrite

hcµν = hµν + 2
∑
ρσ

(ρσ|µν)P cρσ −
∑
ρσ

(ρµ|νσ)P cρσ (52)

And with this the energy can be simplified to Ec = Tr(P ch+ P chc). Similar to this approximation one can make an
assumption that the highest lying virtual molecular orbitals are constrained to remain unoccupied in all configurations
since they would be of higher energies but can only be valid for the very high lying orbitals.
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5.3 Second Quantization

Here I will just list the notation used of second quantization in CI theory. Since we have fermions we get the following
anticommutation relations for annihilation and creation operators.

{aj , ai} = ajai + aiaj = 0 (53)

{a†j , a
†
i} = a†ja

†
i + a†ia

†
j = 0 (54)

{ai, a†j} = aia
†
j + a†jai = δij (55)

We now define the one electron and two electron operations in this formalism using annihilation and creation operators.

Ô1 =

2n∑
ij

〈i|h |j〉 a†iaj (56)

Ô2 =
1

2

2n∑
ijkl

〈ij| kl〉a†ia
†
jalak (57)

Here we have used a shorthand notation of physicists which is |i〉 = |φi〉 and the two electron integral of∫
dx1dx2φ

∗
i (x1)φ∗j (x2)φk(x1)φl(x2) = 〈ij|kl〉. All the summations sum over all the 2n spin orbitals. The hamilto-

nian can be written as

Ĥ =

2n∑
pq

a†pa1[p|h|q] +
1

2

2n∑
pqrs

a†pa
†
rasaq[pq|rs] (58)

Here the square bracket representation is equivalent to the previously mentioned representation and is just the chemist’s
notation. We now define a shift operator as follows

Êij = a†iαajα + a†iβajβ (59)

This is isomorphic to the generators of the unitary group. One can simplify the hamiltonian after breaking it into the
sum of a one electron operator and a two electron operator and then summing them after some simplification to get

Ĥ =

n∑
pq

(p|h|q)Êpq +
1

2

n∑
pqrs

(pq|rs)
(
ÊpqÊrs − δqrÊps

)
(60)

5.4 Determinant-Based CI & the algorithm

While CSFs clearly offer a reduced CI space, many modern algorithms make use of determinants instead since they
offer certain computational advantages. An example of this is demonstrated in [5] where the Cooper-Nesbet method
is used for performing the CI iteration with the coefficients being updated according to the formula

δci =
ri

E −Hii
(61)

Where the r vector is defined as
ri =

∑
j

(Hij − Eδij)cj (62)

Handy realized that if determinants are used as basis functions and particularly can be expressed as alpha strings and
beta strings, then Hij can be computed efficiently.

5.4.1 Alpha and Beta strings

We define the alpha string as an ordered product of creation operators for spin orbitals with alpha spin and
the beta string is defined similarly for the beta spin. For example if we have the slater determinant |I〉 =

|φ1αφ2αφ3αφ1βφ2βφ4β〉, the alpha string for this would be α(Iα) = a†1αa
†
2αa
†
3α and the beta string would be

β(Iβ) = a†1βa
†
2βa
†
4β . The order of writing matters here since an exchange would result in a negative sign being

introduced. To make a convention, the orbitals are listed in strictly increasing order and the beta string is placed to the
right of the alpha string.
There are some advantages of using these strings. Direct CI methods require an index vector that points to a list of
all the allowed excitations on the basis functions. Using he alpha and beta strings, this vector need not have the same

15



Quantum Simulations Reading Project

length as the CI vector and would infact be approximately the square root of the number of determinants. This results
from the fact that alpha orbitals can only excite to alpha orbitals and this is similarly true for beta orbitals. An ad-
ditional efficiency increase happens for calculation of 〈α(Iα)β(Iβ)| Ĥ |α(Jα)β(Iβ)〉 since this integral is completely
independent on the beta string.
The actual representation of alpha and beta strings is done using walks on a graph where they have a unique index or
address obtained by adding the weights of the edges in the walk.

5.4.2 Restricted Active Space CI

The restricted active space (RAS) method calls for the partitioning of the one electron basis into four subsets. The
first subset contains the core orbitals which are constrained to remain doubly occupied. The remaining three subsets
are labelled as I, II and III and have a constraint set on them that I requires a minimum of p electrons and III can have
a maximum of q electrons. The full CI can be obtained as a maximum limit of the RAS space. The RAS CI method
depends on Handy’s separation of determinants into alpha and beta strings. Using RAS CI the CI space is restricted
by not allowing all alpha and beta strings and not allowing certain combinations too. Since N is fixed, the lengths
of the alpha and beta strings nα and nβ are constant too. While it would be possible to create a table of all allowed
combinations of alpha and beta strings, one can make use of multiple graphs to get a more efficient approach. For
example one can use a graph for all strings with no electrons in RAS III, one with one electron in III and one for two
in III. The combinations of these graphs would now have restrictions as per the restrictions required on strings.

5.4.3 Olsen’s Full CI

We now note our CI vector asC(Iα, Iη) and using the second quantized form of the hamiltonain we write the following

σ(Iα, Iβ) =
∑
Jα,Jβ

〈β(Jβ)α(Jα)| Ĥ |α(Iα)β(Iβ)〉C(Jα, Jβ) (63)

This above expression can be broken down into three parts such that σ(Iα, Iβ) = σ1(Iα, Iβ)+σ2(Iα, Iβ)+σ3(Iα, Iβ).
Here σ1 has no α operators and similarly σ2 has no β operators. The remaining part is written as σ3. The expression
of σ1 is written below and one can obtain the expression for σ2 by just exchanging α and β in the below equation.

σ1(Iα, Iβ) =
∑
Jβ

n∑
kl

〈β(Jβ)| Êβkl |β(Iβ)〉

hkl − 1

2

n∑
j

〈kj|jl〉

C(Iα, Jβ)

+
1

2

∑
Jβ

n∑
ijkl

〈β(Jβ)| ÊβijÊ
β
kl |β(Iβ)〉 〈kj|jl〉C(Iα, Jβ)

(64)

We finally get the following for σ3

σ3(Iα, Iβ) =
1

2

∑
Jα,Jβ

n∑
ijkl

〈β(Jβ)| Êβij |β(Iβ)〉 〈α(Jα)| Êβkl |α(Iα)〉 〈kj|jl〉C(Iα, Jβ) (65)

5.4.4 Full CI algorithm

Due to σ1(Iα, Iβ) being independent of Iα apart from the multiplication by factor of C(Iα, Jβ) it is possible to
vectorize it. We can obtain σ2(Iα, Iβ) = (−1)Sσ1(Iβ , Iα) for MS = 0 states but even otherwise due to them
having the same expression except for exchange of α and β even that can be analogously vectorized. For vec-
torizing σ3 a vectorized gather-scatter is used for addressing which is the same as just a map with indices for an-
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other array. For MS = 0 we have σijkl3 (Iα, Iβ) = (−1)Sσklij1 (Iβ , Iα) which we can use for a slight speedup.

Algorithm 1: Vectorized algorithm for σ1

while loop over Iβ do
F (Jβ) = 0 initialize;
while loop over Êβkl from |β(Iβ)〉 do
|β(Kβ)〉 = sgn(kl)Êβkl |β(Iβ)〉;
F (Kβ)+ = sgn(kl)h′kl;
while loop over Êβij from |β(Kβ)〉 do
|β(Jβ)〉 = sgn(ij)Êβij |β(Kβ)〉;
F (Kβ)+ = (1/2)sgn(kl)sgn(ij)(ij|kl);

end
end
σ1(Iα, Iβ) =

∑
Jβ
F (Jβ)C(Iα, Jβ) vectored over Iα;

end

Algorithm 2: Vectorized algorithm for σ3

while loop over kl do
set up L(I), R(I) and sgn(I) defined below;
|α[L(I)]〉 = Êαkl |α[R(I)]〉 sgn(I);
C ′(I, Jβ) = C[L(I), Jβ ]sgn(I) vectorized gather;
while loop over Iβ do

while loop over Êβij from |β(Iβ)〉 do
|β(Jβ)〉 = sgn(ij)Êβij |β(Iβ)〉;
F (Jβ)+ = sgn(ij)(ij|kl);

end
V (I) =

∑
Jβ
F (Jβ)C ′(I, Jβ) vectored over I;

σ3[R(I), Iβ ]+ = V (I) vectorized scatter;
end

end

5.5 Conclusion

We have exhaustively summarized some of the basics in CI theory in this section. The question now is whether one
can actually modify the algorithm in some way so as to obtain a speed up in computational or space complexity
while using a quantum computer. In [7] there is a description for quantum search using Grover’s iterations on an
unstructured database and this potentially offers quadratic speedup on any problem which requires a linear search
as part of it. Another set of problems specifically the hidden subgroup problem also get speedups using quantum
computers. The main approach remains in making use of parallelism in the calculations with an appropriate oracle
and to be able to find a ”faster CI” we would need to first find an efficient mapping to qubits, then see whether we
can map the problem to something where we know a speedup exists. We have seen that FCI is actually used as a
benchmark to verify approximate quantum algorithms like VQE or phase estimation and so if it is possible to speed
up CI calculations with a quantum computer that potentially offers the best way to do quantum chemistry calculations.

6 Gate-free state preparation for fast variational quantum eigensolver simulations

This section aims to summarize [6]. Currently due to limitations of finite coherence times and gate errors, the number
of gates that can be implemented on current devices are not high enough to accurately simulate strongly correlated
molecules which require significant entanglement. In [6], an alternative implementation of VQE dubbed as ctrl-VQE
is proposed which prepared states using a quantum control routine to variationally drive the Hartree-Fock state to the
target full CI state and using this compute the energy of LiH with four transmons.
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6.1 The Method

6.1.1 Variational Quantum Eigensolver

I have discussed VQE methods in more depth in section 4.1 which was summarized from [4]. We first would write the
second electronic Hamiltonian into an equivalent form involving non local strings of Pauli spin operators Ŝi.

Ĥmolecule =
∑
pq

hpqp̂
†q̂ +

1

2

∑
pqrs

〈pq|rs〉p̂†q̂†ŝr̂ (66)

=
∑
i

Ŝihi (67)

Here hi is a sum of molecular one or two electron integrals and the p̂ operators are fermionic annihilation operators.
We can see that this is the same as eq:60. We can get the form of writing it in forms of strings of pauli operators using
various transformations one example being the Jordan-Wigner transformation. The Jordan wigner transformation
maps as follows from a fermionic annihilation operator qp to string of pauli operations labelled here as q̃p

qp 7→
1

2
(Xp + iYp)Z1 · · ·Zp−1 (68)

= (|0〉〈1|)pZ1 · · ·Zp−1 (69)
=: q̃p (70)

The steps involved have been summarized in section 4.1.

6.1.2 Control Variational Quantum Eigensolver ctrl-VQE

The algorithm for this is quite similar to VQE but replaces the parameterized state preparation circuit with a parame-
terized laboratory. The standard procedure follows as described below

1. Map the hamiltonian to a qubit representation and compute the one and two electron integrals required for
the same to define the objective (cost) function to minimize, being 〈Ĥmolecule〉

2. Define a fixed pulse representation (e.g. square pulses, sums of Gaussian pulses, etc.) and parametrize this
chosen pulse representation and choose an initial set for them.

3. Choose the initial state for the qubit system. The HF state is usually a good choice for such problems.

4. Measure the objective (cost) function on the quantum device.

5. Using a classical optimization routine set the new parameters for the next measurement.

6. Repeat until convergence of desired threshold is met. If the chosen parametrized pulse can span the target
Hilbert space, the optimal pulse would have found the minimum energy state.

A thing to note is that the pulse duration is taken as a hyperparameter which can be optimized in the outer-loop. Also
unlike universal quantum computing algorithms this algorithm occurs at the hardware level and in this paper the well
established transmon platform is used. The hamiltonian of the 1D device is as follows

ĤD =

N∑
k=1

(
ωkâ

†
kâk −

δk
2
â†kâ
†
kâkâk

)
+
∑
〈kl〉

g(â†kâl + â†l âk) (71)

Here the summation over 〈kl〉 is over pairs of coupled qubits, âk is the bosonic annihilator for the kth transmon, and
ωk, δk and g are resonant frequency, anharmonicity and constant coupling rate respectively. The results were found to
not depend qualitatively on freqeuncy difference between qubits. The control hamiltonian has the following expression
for a real valued drive Ωk(t) applied on the device

ĤC =

N∑
k=1

Ωk(t)(eινktâk + e−ινktâ†k) (72)

The total hamiltonian would now be the sum of H = ĤD + ĤC . In the interacting fram the final ansatz takes the
form of |ψtrial(Ωn(t), νn)〉 = T e−ι

∫ T
0
dtĤC(t,Ωn(t),νn) |ψ0〉. Here T is the total pulse time and T is the time ordering
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operator. While the control hamiltonian above has only single qubit terms the device itself would have two qubit
couplings with strength of g which create an entangling hamiltonian in the interacting frame

Ĥ(t)C = eιĤDtĤC(t)e−ιĤDt (73)

This signifies that the coupling strength is what would be responsible to describe electron correlation in the target
molecule. The final cost function to minimize is E(Ωn(t), νn) = 〈ψtrial| Ĥmolecule |ψtrial〉 and the kets here can be
either normalized or unnormalized as they would still minimize effectively the same.
When it comes to defining the pulses, parametrized square pulses are defined as follows

Ωk(t) =


c1 0 ≤ t < t1
c2 t1 ≤ t < t2

...
cn tn−1 ≤ t < T

(74)

Here ti are the switching times and ci are the various amplitudes. Each transmon is also driven by a frequency
modulation of form exp(ινkt) where |ωk − νk| < 2π GHz. The parameters we have are hence ci, ti, νi. With N
transmons and n square pulses there is a total of 2Nn paramteres to optimize and the routine used is 1-BFGS-b and
hence we have a complexity of O(N2n2) for updating parameters.
The STO-3G basis set was used throughout. The authors of [6] also published a python package CtrlQ

6.2 Results and discussion

6.2.1 Dissociation of diatomic molecules

Although being small molecules, HeH+ and H2 have served as general benchmarks for quantum algorithms in recent
years. Since these are two orbital, two electron problems these can be mapped to four qubits using Jordan-Wigner
transform (eq: 68-70) however using a parity mapping (described below) two qubits come out to be diagonal and so
can be removed from consideration.

ap 7→
1

2
(XpZp−1 + iYp)Xp+1 · · ·XN (75)

=
1

4
[(Xp + iYp)(I + Zp−1)− (Xp − iYp)(I − Zp−1)]Xp+1 · · ·XN (76)

= [(|0〉〈1|)p(|0〉〈0|)p−1 − (|0〉〈1|)p(|1〉〈1|)p−1]Xp+1 · · ·XN (77)

As H2 dissociates, the HOMO-LUMO gap shrinks and so the mean field approximation does not remain very faithful
hence HF state loses accuracy however HeH+ in contrast gets better accuracy at higher bond distances. This is since it
is the strongest acid (and interestingly the first molecule formed in the universe) and hence dissociation is a heterolytic
deprotonation. The paper shows that ctrl-VQE reproduces the FCI bond dissociation curve of H2 and HeH+ with
high accuracy.
For H2 as bond dissociates the singlet ground state becomes degenerate with the lowest triplet state and hence there
is a possibility of the superposition of them to form. To avoid this there can be a modification done to the objective
function by adding a certain penalty to it giving us the following objective function

〈H〉+ α(1− || |ψ〉s ||)
2 + β(〈s〉 − st)2 (78)

Here |ψ〉s is the state projected onto the qubit subspace and s is the total spin operator for our reduced space given by
the operator below. For a singlet state st = 0. Also α and β are simply constants.

s =

 1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 (79)

This essentially helps us in tackling the leakage issues due to degenerate states which would be outside of the qubit
subspace.

6.2.2 Leakages and pulse duration

Molecules which are strongly correlated tend to be difficult to simulate using VQE since they generally require higher
depth of circuits which brings up more noise. Analogously in ctrl-VQE longer pulses are expected for such kinds of
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molecules as entanglement cannot be created instantly.
What we deem as leakage here is the amount of the population that lies outside of the basis states. As per the results
of [6] this seemed to increase with evolution time. However the actual leakage amount does also change depending
on the total pulse time T . Another thing to note is that the convergence of the molecular energy for both the example
molecules is not monotonically decreasing but rather initially increases and then proceeds to rapidly decrease.

6.2.3 Comparison with Circuit Compilation Techniques

To execute normal gate based VQE, the gates are compiled into sequences of analog control pulses using a certain
look-up table to map each gate to some analog pulse. As such this compilation is near instantaneous and well suited
for VQE due to numerous iterations being performed. However this may result in very a long pulse duration which
could be avoided by using optimized compilation techniques.
One such example being the GRAPE compilation technique which employs an optimal control routine which compiles
to machine-level sequences of analog pulses. This however is quite costly since GRAPE updates time-discrete pulses
using gradients hence is impractical for VQE despite possibly offering a 5-fold improvement.
One may see that GRAPE does seem similar to ctrl-VQE in the lines that both aim to generate a pulse which is
equivalent to a certain circuit and involves updating parameters. However there is a fundamental difference in terms
of the fact that GRAPE is a compilation technique for a certain already present circuit whereas while there is some
circuit that is represented by a ctrl-VQE pulse there is no reference to such a circuit.
Now one can be sure that whatever analog pulse we do reach at in the end of ctrl-VQE has some unitary representation
and this unitary can naturally be transpiled or decomposed to a normal quantum circuit. The paper made use of the
KAK decomposition technique along with transpilation. Interestingly the pulse durations of the KAK decomposed
circuit using the normal mapping came out as 1202 ns and transpiling gave 825 ns in stark contrast to the original
ctrl-VQE pulse being 9 ns for the H2 molecule at a bond distance of 0.075 nm. This indicates how much of the
circuit depth is actually unnecessary to some extent.

6.2.4 Adaptive update of pulse parametrization

A common issue in problems which involve updating parameters is the possibility of over-paraemetrizing the system.
The paper proposes a scheme for adaptively updating the pulse to prevent a large number of parameters where instead
of a fixed number of time divisions, the number of time segments is increased as the algorithm progresses.

1. Initialize a square pulse with n = 1 time segment.
2. Divide the pulse at some randomly chosen time so n = 2 now.
3. Perform the pulse optimization.
4. Divide the largest time segment into two using a randomly chosen time making number of segments as n+1.
5. Perform pulse optimization on the new pulse.
6. Repeat 4. and 5. till the wanted convergence is reached.

The total number of parameters to optimize would be N(n+ 1) since irrespective of pulse shape only a single driving
frequency is used. The amplitudes are constrained to stay between ±40 MHz and the frequencies to be ωk ± 3π GHz.
This adoptive strategy was tried on H2, HeH+ and LiH with a total duration of 9, 9, 40 ns respectively. Chemical
accuracy (energy error smaller than 1 kcal/mol) was achieved for the first two with simply one time segment but
required three for LiH.

6.3 Conclusion

The paper [6] offers a modified VQE which it successfully showed to quite accurately reproduce the full CI values of
H2, HeH+ and even LiH with a modified version of itself. The results demonstrate that even with relatively modest
number of parameters convergence in energy can be achieved as the problem size is increased. There is an impressive
improvement over pulse durations in comparison to an actual VQE but it must be noted that this is a hardware based
algorithm hence is not universal. Another point to note is that pulse shapes (which were square here for the most
part) is another parameter which can be fine tuned and have more sophisticated constraints. Larger systems still are
not explored through this method and would definitely require larger pulse duration to be able to describe stronger
correlations.
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